Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
68,85 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker
Key Features:Perform ML experiments with built-in and custom algorithms in SageMaker
Explore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learn
Use the different features and capabilities of SageMaker to automate relevant ML processes
Book Description:
Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems.
This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams.
By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
What You Will Learn:Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
Push the limits of customization in SageMaker using custom container images
Use AutoML capabilities with SageMaker Autopilot to create high-quality models
Work with effective data analysis and preparation techniques
Explore solutions for debugging and managing ML experiments and deployments
Deal with bias detection and ML explainability requirements using SageMaker Clarify
Automate intermediate and complex deployments and workflows using a variety of solutions
Who this book is for:
This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
Key Features:Perform ML experiments with built-in and custom algorithms in SageMaker
Explore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learn
Use the different features and capabilities of SageMaker to automate relevant ML processes
Book Description:
Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems.
This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams.
By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
What You Will Learn:Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
Push the limits of customization in SageMaker using custom container images
Use AutoML capabilities with SageMaker Autopilot to create high-quality models
Work with effective data analysis and preparation techniques
Explore solutions for debugging and managing ML experiments and deployments
Deal with bias detection and ML explainability requirements using SageMaker Clarify
Automate intermediate and complex deployments and workflows using a variety of solutions
Who this book is for:
This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker
Key Features:Perform ML experiments with built-in and custom algorithms in SageMaker
Explore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learn
Use the different features and capabilities of SageMaker to automate relevant ML processes
Book Description:
Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems.
This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams.
By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
What You Will Learn:Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
Push the limits of customization in SageMaker using custom container images
Use AutoML capabilities with SageMaker Autopilot to create high-quality models
Work with effective data analysis and preparation techniques
Explore solutions for debugging and managing ML experiments and deployments
Deal with bias detection and ML explainability requirements using SageMaker Clarify
Automate intermediate and complex deployments and workflows using a variety of solutions
Who this book is for:
This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
Key Features:Perform ML experiments with built-in and custom algorithms in SageMaker
Explore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learn
Use the different features and capabilities of SageMaker to automate relevant ML processes
Book Description:
Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems.
This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams.
By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
What You Will Learn:Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
Push the limits of customization in SageMaker using custom container images
Use AutoML capabilities with SageMaker Autopilot to create high-quality models
Work with effective data analysis and preparation techniques
Explore solutions for debugging and managing ML experiments and deployments
Deal with bias detection and ML explainability requirements using SageMaker Clarify
Automate intermediate and complex deployments and workflows using a variety of solutions
Who this book is for:
This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
Über den Autor
Joshua Arvin Lat is the Chief Technology Officer (CTO) of NuWorks Interactive Labs, Inc. He previously served as the CTO of three Australian-owned companies and also served as the director for software development and engineering for multiple e-commerce start-ups in the past, which allowed him to be more effective as a leader. Years ago, he and his team won first place in a global cybersecurity competition with their published research paper. He is also an AWS Machine Learning Hero and has shared his knowledge at several international conferences, discussing practical strategies on machine learning, engineering, security, and management.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781800567030 |
ISBN-10: | 1800567030 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Lat, Joshua Arvin |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 41 mm |
Von/Mit: | Joshua Arvin Lat |
Erscheinungsdatum: | 22.10.2021 |
Gewicht: | 1,395 kg |
Über den Autor
Joshua Arvin Lat is the Chief Technology Officer (CTO) of NuWorks Interactive Labs, Inc. He previously served as the CTO of three Australian-owned companies and also served as the director for software development and engineering for multiple e-commerce start-ups in the past, which allowed him to be more effective as a leader. Years ago, he and his team won first place in a global cybersecurity competition with their published research paper. He is also an AWS Machine Learning Hero and has shared his knowledge at several international conferences, discussing practical strategies on machine learning, engineering, security, and management.
Details
Erscheinungsjahr: | 2021 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781800567030 |
ISBN-10: | 1800567030 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Lat, Joshua Arvin |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 41 mm |
Von/Mit: | Joshua Arvin Lat |
Erscheinungsdatum: | 22.10.2021 |
Gewicht: | 1,395 kg |
Warnhinweis