Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
50,85 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Über den Autor
William W. Hsieh is a Professor in the Department of Earth and Ocean Sciences and in the Department of Physics and Astronomy, as well as Chair of the Atmospheric Science Programme, at the University of British Columbia. He is internationally known for his pioneering work in developing and applying machine learning methods in environmental sciences. He has published over eighty peer-reviewed journal publications covering areas of climate variability, machine learning, oceanography, atmospheric science and hydrology.
Inhaltsverzeichnis
Preface; 1. Basic notions in classical data analysis; 2. Linear multivariate statistical analysis; 3. Basic time series analysis; 4. Feed-forward neural network models; 5. Nonlinear optimization; 6. Learning and generalization; 7. Kernel methods; 8. Nonlinear classification; 9. Nonlinear regression; 10. Nonlinear principal component analysis; 11. Nonlinear canonical correlation analysis; 12. Applications in environmental sciences; Appendix A. Sources for data and codes; Appendix B. Lagrange multipliers; Bibliography; Index.
Details
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Populäre Darstellungen |
Genre: | Chemie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781108456906 |
ISBN-10: | 1108456901 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Hsieh, William. W |
Hersteller: | Cambridge University Press |
Maße: | 244 x 170 x 20 mm |
Von/Mit: | William. W Hsieh |
Erscheinungsdatum: | 14.12.2017 |
Gewicht: | 0,628 kg |
Über den Autor
William W. Hsieh is a Professor in the Department of Earth and Ocean Sciences and in the Department of Physics and Astronomy, as well as Chair of the Atmospheric Science Programme, at the University of British Columbia. He is internationally known for his pioneering work in developing and applying machine learning methods in environmental sciences. He has published over eighty peer-reviewed journal publications covering areas of climate variability, machine learning, oceanography, atmospheric science and hydrology.
Inhaltsverzeichnis
Preface; 1. Basic notions in classical data analysis; 2. Linear multivariate statistical analysis; 3. Basic time series analysis; 4. Feed-forward neural network models; 5. Nonlinear optimization; 6. Learning and generalization; 7. Kernel methods; 8. Nonlinear classification; 9. Nonlinear regression; 10. Nonlinear principal component analysis; 11. Nonlinear canonical correlation analysis; 12. Applications in environmental sciences; Appendix A. Sources for data and codes; Appendix B. Lagrange multipliers; Bibliography; Index.
Details
Erscheinungsjahr: | 2017 |
---|---|
Fachbereich: | Populäre Darstellungen |
Genre: | Chemie |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781108456906 |
ISBN-10: | 1108456901 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Hsieh, William. W |
Hersteller: | Cambridge University Press |
Maße: | 244 x 170 x 20 mm |
Von/Mit: | William. W Hsieh |
Erscheinungsdatum: | 14.12.2017 |
Gewicht: | 0,628 kg |
Warnhinweis