Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Machine Learning for Risk Calculations
A Practitioner's View
Buch von Ignacio Ruiz (u. a.)
Sprache: Englisch

76,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions

The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner's View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions.

This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You'll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you'll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used.
* Review the fundamentals of deep learning and Chebyshev tensors
* Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation
* Learn how to apply the solutions to a wide range of real-life risk calculations.
* Download sample code used in the book, so you can follow along and experiment with your own calculations
* Realize improved risk management whilst overcoming the burden of limited computational power

Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.
State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions

The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner's View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions.

This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You'll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you'll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used.
* Review the fundamentals of deep learning and Chebyshev tensors
* Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation
* Learn how to apply the solutions to a wide range of real-life risk calculations.
* Download sample code used in the book, so you can follow along and experiment with your own calculations
* Realize improved risk management whilst overcoming the burden of limited computational power

Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.
Über den Autor

IGNACIO RUIZ, PhD, is the head of Counterparty Credit Risk Measurement and Analytics at Scotiabank. Prior to that he has been head quant for Counterparty Credit Risk Exposure Analytics at Credit Suisse, head of Equity Risk Analytics at BNP Paribas and he founded MoCaX Intelligence, from where he offered his services as an independent consultant. He holds a PhD in Physics from the University of Cambridge.

MARIANO ZERON, PhD, is Head of Research and Development at MoCaX Intelligence. Prior to that he was a quant researcher at Areski Capital. He has extensive experience with Chebyshev Tensors and Deep Neural Nets applied to risk calculations. He holds a PhD in Mathematics from the University of Cambridge.

Inhaltsverzeichnis

Acknowledgements xvii

Foreword xxi

Motivation and aim of this book xxiii

Part One Fundamental Approximation Methods

Chapter 1 Machine Learning 3

1.1 Introduction to Machine Learning 3

1.1.1 A brief history of Machine Learning Methods 4

1.1.2 Main sub-categories in Machine Learning 5

1.1.3 Applications of interest 7

1.2 The Linear Model 7

1.2.1 General concepts 8

1.2.2 The standard linear model 12

1.3 Training and predicting 15

1.3.1 The frequentist approach 18

1.3.2 The Bayesian approach 21

1.3.3 Testing-in search of consistent accurate predictions 25

1.3.4 Underfitting and overfitting 25

1.3.5 K-fold cross-validation 27

1.4 Model complexity 28

1.4.1 Regularisation 29

1.4.2 Cross-validation for regularisation 31

1.4.3 Hyper-parameter optimisation 33

Chapter 2 Deep Neural Nets 39

2.1 A brief history of Deep Neural Nets 39

2.2 The basic Deep Neural Net model 41

2.2.1 Single neuron 41

2.2.2 Artificial Neural Net 43

2.2.3 Deep Neural Net 46

2.3 Universal Approximation Theorems 48

2.4 Training of Deep Neural Nets 49

2.4.1 Backpropagation 50

2.4.2 Backpropagation example 51

2.4.3 Optimisation of cost function 55

2.4.4 Stochastic gradient descent 57

2.4.5 Extensions of stochastic gradient descent 58

2.5 More sophisticated DNNs 59

2.5.1 Convolution Neural Nets 59

2.5.2 Other famous architectures 63

2.6 Summary of chapter 64

Chapter 3 Chebyshev Tensors 65

3.1 Approximating functions with polynomials 65

3.2 Chebyshev Series 66

3.2.1 Lipschitz continuity and Chebyshev projections 67

3.2.2 Smooth functions and Chebyshev projections 70

3.2.3 Analytic functions and Chebyshev projections 70

3.3 Chebyshev Tensors and interpolants 72

3.3.1 Tensors and polynomial interpolants 72

3.3.2 Misconception over polynomial interpolation 73

3.3.3 Chebyshev points 74

3.3.4 Chebyshev interpolants 76

3.3.5 Aliasing phenomenon 77

3.3.6 Convergence rates of Chebyshev interpolants 77

3.3.7 High-dimensional Chebyshev interpolants 79

3.4 Ex ante error estimation 82

3.5 What makes Chebyshev points unique 85

3.6 Evaluation of Chebyshev interpolants 89

3.6.1 Clenshaw algorithm 90

3.6.2 Barycentric interpolation formula 91

3.6.3 Evaluating high-dimensional tensors 93

3.6.4 Example of numerical stability 94

3.7 Derivative approximation 95

3.7.1 Convergence of Chebyshev derivatives 95

3.7.2 Computation of Chebyshev derivatives 96

3.7.3 Derivatives in high dimensions 97

3.8 Chebyshev Splines 99

3.8.1 Gibbs phenomenon 99

3.8.2 Splines 100

3.8.3 Splines of Chebyshev 101

3.8.4 Chebyshev Splines in high dimensions 101

3.9 Algebraic operations with Chebyshev Tensors 101

3.10 Chebyshev Tensors and Machine Learning 103

3.11 Summary of chapter 104

Part Two The toolkit - plugging in approximation methods

Chapter 4 Introduction: why is a toolkit needed 107

4.1 The pricing problem 107

4.2 Risk calculation with proxy pricing 109

4.3 The curse of dimensionality 110

4.4 The techniques in the toolkit 112

Chapter 5 Composition techniques 113

5.1 Leveraging from existing parametrisations 114

5.1.1 Risk factor generating models 114

5.1.2 Pricing functions and model risk factors 115

5.1.3 The tool obtained 116

5.2 Creating a parametrisation 117

5.2.1 Principal Component Analysis 117

5.2.2 Autoencoders 119

5.3 Summary of chapter 120

Chapter 6 Tensors in TT format and Tensor Extension Algorithms 123

6.1 Tensors in TT format 123

6.1.1 Motivating example 124

6.1.2 General case 124

6.1.3 Basic operations 126

6.1.4 Evaluation of Chebyshev Tensors in TT format 127

6.2 Tensor Extension Algorithms 129

6.3 Step 1-Optimising over tensors of fixed rank 129

6.3.1 The Fundamental Completion Algorithm 131

6.4 Step 2-Optimising over tensors of varying rank 133

6.4.1 The Rank Adaptive Algorithm 134

6.5 Step 3-Adapting the sampling set 135

6.5.1 The Sample Adaptive Algorithm 136

6.6 Summary of chapter 137

Chapter 7 Sliding Technique 139

7.1 Slide 139

7.2 Slider 140

7.3 Evaluating a slider 141

7.3.1 Relation to Taylor approximation 142

7.4 Summary of chapter 142

Chapter 8 The Jacobian projection technique 143

8.1 Setting the background 144

8.2 What we can recover 145

8.2.1 Intuition behind g and its derivative dg 146

8.2.2 Using the derivative of f 147

8.2.3 When k < n becomes a problem 149

8.3 Partial derivatives via projections onto the Jacobian 149

Part Three Hybrid solutions - approximation methods and the toolkit

Chapter 9 Introduction 155

9.1 The dimensionality problem revisited 155

9.2 Exploiting the Composition Technique 156

Chapter 10 The Toolkit and Deep Neural Nets 159

10.1 Building on P using the image of g 159

10.2 Building on f 160

Chapter 11 The Toolkit and Chebyshev Tensors 161

11.1 Full Chebyshev Tensor 161

11.2 TT-format Chebyshev Tensor 162

11.3 Chebyshev Slider 162

11.4 A final note 163

Chapter 12 Hybrid Deep Neural Nets and Chebyshev Tensors Frameworks 165

12.1 The fundamental idea 165

12.1.1 Factorable Functions 167

12.2 DNN+CT with Static Training Set 168

12.3 DNN+CT with Dynamic Training Set 171

12.4 Numerical Tests 172

12.4.1 Cost Function Minimisation 172

12.4.2 Maximum Error 174

12.5 Enhanced DNN+CT architectures and further research 174

Part Four Applications

Chapter 13 The aim 179

13.1 Suitability of the approximation methods 179

13.2 Understanding the variables at play 181

Chapter 14 When to use Chebyshev Tensors and when to use Deep Neural Nets 185

14.1 Speed and convergence 185

14.1.1 Speed of evaluation 186

14.1.2 Convergence 186

14.1.3 Convergence Rate in Real-Life Contexts 187

14.2 The question of dimension 190

14.2.1 Taking into account the application 192

14.3 Partial derivatives and ex ante error estimation 195

14.4 Summary of chapter 197

Chapter 15 Counterparty credit risk 199

15.1 Monte Carlo simulations for CCR 200

15.1.1 Scenario diffusion 200

15.1.2 Pricing step-computational bottleneck 200

15.2 Solution 201

15.2.1 Popular solutions 201

15.2.2 The hybrid solution 202

15.2.3 Variables at play 203

15.2.4 Optimal setup 207

15.2.5 Possible proxies 207

15.2.6 Portfolio calculations 209

15.2.7 If the model space is not available 209

15.3 Tests 211

15.3.1 Trade types, risk factors and proxies 212

15.3.2 Proxy at each time point 213

15.3.3 Proxy for all time points 223

15.3.4 Adding non-risk-driving variables 228

15.3.5 High-dimensional problems 235

15.4 Results Analysis and Conclusions 236

15.5 Summary of chapter 239

Chapter 16 Market Risk 241

16.1 VaR-like calculations 242

16.1.1 Common techniques in the computation of VaR 243

16.2 Enhanced Revaluation Grids 245

16.3 Fundamental Review of the Trading Book 246

16.3.1 Challenges 247

16.3.2 Solution 248

16.3.3 The intuition behind Chebyshev Sliders 252

16.4 Proof of concept 255

16.4.1 Proof of concept specifics 255

16.4.2 Test specifics 257

16.4.3 Results for swap 260

16.4.4 Results for swaptions 10-day liquidity horizon 262

16.4.5 Results for swaptions 60-day liquidity horizon 265

16.4.6 Daily computation and reusability 268

16.4.7 Beyond regulatory minimum calculations 271

16.5 Stability of technique 272

16.6 Results beyond vanilla portfolios-further research 272

16.7 Summary of chapter 273

Chapter 17 Dynamic sensitivities 275

17.1 Simulating sensitivities 276

17.1.1 Scenario diffusion 276

17.1.2 Computing sensitivities 276

17.1.3 Computational cost 276

17.1.4 Methods available 277

17.2 The Solution 278

17.2.1 Hybrid method 279

17.3 An important use of dynamic sensitivities 282

17.4 Numerical tests 283

17.4.1 FX Swap 283

[...]opean Spread Option 284

17.5 Discussion of results 291

17.6 Alternative methods 293

17.7 Summary of chapter 294

Chapter 18 Pricing model calibration 295

18.1 Introduction 295

18.1.1 Examples of pricing models 297

18.2 Solution 298

18.2.1 Variables at play 299

18.2.2 Possible proxies 299

18.2.3 Domain of approximation 300

18.3 Test description 301

18.3.1 Test setup 301

18.4 Results with Chebyshev Tensors 304

18.4.1 Rough Bergomi model with constant forward variance 304

18.4.2 Rough Bergomi model with piece-wise constant forward variance 307

18.5 Results with Deep Neural Nets 309

18.6 Comparison of results via CT and DNN 310

18.7 Summary of chapter 311

Chapter 19 Approximation of the implied volatility function 313

19.1 The computation of implied volatility 314

19.1.1 Available methods 315

19.2 Solution 316

19.2.1 Reducing the dimension of the problem 317

19.2.2...

Details
Erscheinungsjahr: 2021
Fachbereich: Betriebswirtschaft
Genre: Importe, Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Buch
Inhalt: 464 S.
ISBN-13: 9781119791386
ISBN-10: 1119791383
Sprache: Englisch
Einband: Gebunden
Autor: Ruiz, Ignacio
Zeron, Mariano
Hersteller: Wiley
Maße: 246 x 174 x 40 mm
Von/Mit: Ignacio Ruiz (u. a.)
Erscheinungsdatum: 28.12.2021
Gewicht: 0,794 kg
Artikel-ID: 120335292
Über den Autor

IGNACIO RUIZ, PhD, is the head of Counterparty Credit Risk Measurement and Analytics at Scotiabank. Prior to that he has been head quant for Counterparty Credit Risk Exposure Analytics at Credit Suisse, head of Equity Risk Analytics at BNP Paribas and he founded MoCaX Intelligence, from where he offered his services as an independent consultant. He holds a PhD in Physics from the University of Cambridge.

MARIANO ZERON, PhD, is Head of Research and Development at MoCaX Intelligence. Prior to that he was a quant researcher at Areski Capital. He has extensive experience with Chebyshev Tensors and Deep Neural Nets applied to risk calculations. He holds a PhD in Mathematics from the University of Cambridge.

Inhaltsverzeichnis

Acknowledgements xvii

Foreword xxi

Motivation and aim of this book xxiii

Part One Fundamental Approximation Methods

Chapter 1 Machine Learning 3

1.1 Introduction to Machine Learning 3

1.1.1 A brief history of Machine Learning Methods 4

1.1.2 Main sub-categories in Machine Learning 5

1.1.3 Applications of interest 7

1.2 The Linear Model 7

1.2.1 General concepts 8

1.2.2 The standard linear model 12

1.3 Training and predicting 15

1.3.1 The frequentist approach 18

1.3.2 The Bayesian approach 21

1.3.3 Testing-in search of consistent accurate predictions 25

1.3.4 Underfitting and overfitting 25

1.3.5 K-fold cross-validation 27

1.4 Model complexity 28

1.4.1 Regularisation 29

1.4.2 Cross-validation for regularisation 31

1.4.3 Hyper-parameter optimisation 33

Chapter 2 Deep Neural Nets 39

2.1 A brief history of Deep Neural Nets 39

2.2 The basic Deep Neural Net model 41

2.2.1 Single neuron 41

2.2.2 Artificial Neural Net 43

2.2.3 Deep Neural Net 46

2.3 Universal Approximation Theorems 48

2.4 Training of Deep Neural Nets 49

2.4.1 Backpropagation 50

2.4.2 Backpropagation example 51

2.4.3 Optimisation of cost function 55

2.4.4 Stochastic gradient descent 57

2.4.5 Extensions of stochastic gradient descent 58

2.5 More sophisticated DNNs 59

2.5.1 Convolution Neural Nets 59

2.5.2 Other famous architectures 63

2.6 Summary of chapter 64

Chapter 3 Chebyshev Tensors 65

3.1 Approximating functions with polynomials 65

3.2 Chebyshev Series 66

3.2.1 Lipschitz continuity and Chebyshev projections 67

3.2.2 Smooth functions and Chebyshev projections 70

3.2.3 Analytic functions and Chebyshev projections 70

3.3 Chebyshev Tensors and interpolants 72

3.3.1 Tensors and polynomial interpolants 72

3.3.2 Misconception over polynomial interpolation 73

3.3.3 Chebyshev points 74

3.3.4 Chebyshev interpolants 76

3.3.5 Aliasing phenomenon 77

3.3.6 Convergence rates of Chebyshev interpolants 77

3.3.7 High-dimensional Chebyshev interpolants 79

3.4 Ex ante error estimation 82

3.5 What makes Chebyshev points unique 85

3.6 Evaluation of Chebyshev interpolants 89

3.6.1 Clenshaw algorithm 90

3.6.2 Barycentric interpolation formula 91

3.6.3 Evaluating high-dimensional tensors 93

3.6.4 Example of numerical stability 94

3.7 Derivative approximation 95

3.7.1 Convergence of Chebyshev derivatives 95

3.7.2 Computation of Chebyshev derivatives 96

3.7.3 Derivatives in high dimensions 97

3.8 Chebyshev Splines 99

3.8.1 Gibbs phenomenon 99

3.8.2 Splines 100

3.8.3 Splines of Chebyshev 101

3.8.4 Chebyshev Splines in high dimensions 101

3.9 Algebraic operations with Chebyshev Tensors 101

3.10 Chebyshev Tensors and Machine Learning 103

3.11 Summary of chapter 104

Part Two The toolkit - plugging in approximation methods

Chapter 4 Introduction: why is a toolkit needed 107

4.1 The pricing problem 107

4.2 Risk calculation with proxy pricing 109

4.3 The curse of dimensionality 110

4.4 The techniques in the toolkit 112

Chapter 5 Composition techniques 113

5.1 Leveraging from existing parametrisations 114

5.1.1 Risk factor generating models 114

5.1.2 Pricing functions and model risk factors 115

5.1.3 The tool obtained 116

5.2 Creating a parametrisation 117

5.2.1 Principal Component Analysis 117

5.2.2 Autoencoders 119

5.3 Summary of chapter 120

Chapter 6 Tensors in TT format and Tensor Extension Algorithms 123

6.1 Tensors in TT format 123

6.1.1 Motivating example 124

6.1.2 General case 124

6.1.3 Basic operations 126

6.1.4 Evaluation of Chebyshev Tensors in TT format 127

6.2 Tensor Extension Algorithms 129

6.3 Step 1-Optimising over tensors of fixed rank 129

6.3.1 The Fundamental Completion Algorithm 131

6.4 Step 2-Optimising over tensors of varying rank 133

6.4.1 The Rank Adaptive Algorithm 134

6.5 Step 3-Adapting the sampling set 135

6.5.1 The Sample Adaptive Algorithm 136

6.6 Summary of chapter 137

Chapter 7 Sliding Technique 139

7.1 Slide 139

7.2 Slider 140

7.3 Evaluating a slider 141

7.3.1 Relation to Taylor approximation 142

7.4 Summary of chapter 142

Chapter 8 The Jacobian projection technique 143

8.1 Setting the background 144

8.2 What we can recover 145

8.2.1 Intuition behind g and its derivative dg 146

8.2.2 Using the derivative of f 147

8.2.3 When k < n becomes a problem 149

8.3 Partial derivatives via projections onto the Jacobian 149

Part Three Hybrid solutions - approximation methods and the toolkit

Chapter 9 Introduction 155

9.1 The dimensionality problem revisited 155

9.2 Exploiting the Composition Technique 156

Chapter 10 The Toolkit and Deep Neural Nets 159

10.1 Building on P using the image of g 159

10.2 Building on f 160

Chapter 11 The Toolkit and Chebyshev Tensors 161

11.1 Full Chebyshev Tensor 161

11.2 TT-format Chebyshev Tensor 162

11.3 Chebyshev Slider 162

11.4 A final note 163

Chapter 12 Hybrid Deep Neural Nets and Chebyshev Tensors Frameworks 165

12.1 The fundamental idea 165

12.1.1 Factorable Functions 167

12.2 DNN+CT with Static Training Set 168

12.3 DNN+CT with Dynamic Training Set 171

12.4 Numerical Tests 172

12.4.1 Cost Function Minimisation 172

12.4.2 Maximum Error 174

12.5 Enhanced DNN+CT architectures and further research 174

Part Four Applications

Chapter 13 The aim 179

13.1 Suitability of the approximation methods 179

13.2 Understanding the variables at play 181

Chapter 14 When to use Chebyshev Tensors and when to use Deep Neural Nets 185

14.1 Speed and convergence 185

14.1.1 Speed of evaluation 186

14.1.2 Convergence 186

14.1.3 Convergence Rate in Real-Life Contexts 187

14.2 The question of dimension 190

14.2.1 Taking into account the application 192

14.3 Partial derivatives and ex ante error estimation 195

14.4 Summary of chapter 197

Chapter 15 Counterparty credit risk 199

15.1 Monte Carlo simulations for CCR 200

15.1.1 Scenario diffusion 200

15.1.2 Pricing step-computational bottleneck 200

15.2 Solution 201

15.2.1 Popular solutions 201

15.2.2 The hybrid solution 202

15.2.3 Variables at play 203

15.2.4 Optimal setup 207

15.2.5 Possible proxies 207

15.2.6 Portfolio calculations 209

15.2.7 If the model space is not available 209

15.3 Tests 211

15.3.1 Trade types, risk factors and proxies 212

15.3.2 Proxy at each time point 213

15.3.3 Proxy for all time points 223

15.3.4 Adding non-risk-driving variables 228

15.3.5 High-dimensional problems 235

15.4 Results Analysis and Conclusions 236

15.5 Summary of chapter 239

Chapter 16 Market Risk 241

16.1 VaR-like calculations 242

16.1.1 Common techniques in the computation of VaR 243

16.2 Enhanced Revaluation Grids 245

16.3 Fundamental Review of the Trading Book 246

16.3.1 Challenges 247

16.3.2 Solution 248

16.3.3 The intuition behind Chebyshev Sliders 252

16.4 Proof of concept 255

16.4.1 Proof of concept specifics 255

16.4.2 Test specifics 257

16.4.3 Results for swap 260

16.4.4 Results for swaptions 10-day liquidity horizon 262

16.4.5 Results for swaptions 60-day liquidity horizon 265

16.4.6 Daily computation and reusability 268

16.4.7 Beyond regulatory minimum calculations 271

16.5 Stability of technique 272

16.6 Results beyond vanilla portfolios-further research 272

16.7 Summary of chapter 273

Chapter 17 Dynamic sensitivities 275

17.1 Simulating sensitivities 276

17.1.1 Scenario diffusion 276

17.1.2 Computing sensitivities 276

17.1.3 Computational cost 276

17.1.4 Methods available 277

17.2 The Solution 278

17.2.1 Hybrid method 279

17.3 An important use of dynamic sensitivities 282

17.4 Numerical tests 283

17.4.1 FX Swap 283

[...]opean Spread Option 284

17.5 Discussion of results 291

17.6 Alternative methods 293

17.7 Summary of chapter 294

Chapter 18 Pricing model calibration 295

18.1 Introduction 295

18.1.1 Examples of pricing models 297

18.2 Solution 298

18.2.1 Variables at play 299

18.2.2 Possible proxies 299

18.2.3 Domain of approximation 300

18.3 Test description 301

18.3.1 Test setup 301

18.4 Results with Chebyshev Tensors 304

18.4.1 Rough Bergomi model with constant forward variance 304

18.4.2 Rough Bergomi model with piece-wise constant forward variance 307

18.5 Results with Deep Neural Nets 309

18.6 Comparison of results via CT and DNN 310

18.7 Summary of chapter 311

Chapter 19 Approximation of the implied volatility function 313

19.1 The computation of implied volatility 314

19.1.1 Available methods 315

19.2 Solution 316

19.2.1 Reducing the dimension of the problem 317

19.2.2...

Details
Erscheinungsjahr: 2021
Fachbereich: Betriebswirtschaft
Genre: Importe, Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Buch
Inhalt: 464 S.
ISBN-13: 9781119791386
ISBN-10: 1119791383
Sprache: Englisch
Einband: Gebunden
Autor: Ruiz, Ignacio
Zeron, Mariano
Hersteller: Wiley
Maße: 246 x 174 x 40 mm
Von/Mit: Ignacio Ruiz (u. a.)
Erscheinungsdatum: 28.12.2021
Gewicht: 0,794 kg
Artikel-ID: 120335292
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte