Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
LINR ALGEBRA & OPTIM APPL (V2)
Buch von Jean Gallier & Jocelyn Quaintance
Sprache: Englisch

231,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.
Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.
Details
Erscheinungsjahr: 2020
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9789811216565
ISBN-10: 9811216568
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Jean Gallier & Jocelyn Quaintance
Redaktion: Quaintance, Jocelyn
Hersteller: World Scientific
Maße: 235 x 157 x 52 mm
Von/Mit: Jean Gallier & Jocelyn Quaintance
Erscheinungsdatum: 06.03.2020
Gewicht: 1,424 kg
Artikel-ID: 117981454
Details
Erscheinungsjahr: 2020
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9789811216565
ISBN-10: 9811216568
Sprache: Englisch
Ausstattung / Beilage: HC gerader Rücken kaschiert
Einband: Gebunden
Autor: Jean Gallier & Jocelyn Quaintance
Redaktion: Quaintance, Jocelyn
Hersteller: World Scientific
Maße: 235 x 157 x 52 mm
Von/Mit: Jean Gallier & Jocelyn Quaintance
Erscheinungsdatum: 06.03.2020
Gewicht: 1,424 kg
Artikel-ID: 117981454
Warnhinweis