Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Lineare Algebra und Geometrie
Taschenbuch von Wilhelm Klingenberg
Sprache: Deutsch

49,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Kategorien:
Beschreibung
Aus den Besprechungen: "... dieses gehaltvolle Buch ... ist je zur Hälfte der linearen Algebra und der klassischen Geometrie gewidmet. Neben dem Standardmaterial der linearen Algebra werden auch eingehend die Jordansche Normalform und deren Anwendung auf die Lösung von Systemen linearer Differentialgleichungen mit konstanten Koeffizienten und, ausführlicher als üblich, einiges aus der Hilberttheorie behandelt.... Wegen seiner reichen und interessanten Stoffauswahl und der Ökonomie der Darstellung ist das Buch sowohl als Grundlage von Vorlesungen wie zum Selbststudium bestens geeignet." #Internationale Mathematische Nachrichten#1 In der nun 3. Auflage finden sich auf oft geäußerten Wunsch erneut zahlreiche Übungsaufgaben.
Aus den Besprechungen: "... dieses gehaltvolle Buch ... ist je zur Hälfte der linearen Algebra und der klassischen Geometrie gewidmet. Neben dem Standardmaterial der linearen Algebra werden auch eingehend die Jordansche Normalform und deren Anwendung auf die Lösung von Systemen linearer Differentialgleichungen mit konstanten Koeffizienten und, ausführlicher als üblich, einiges aus der Hilberttheorie behandelt.... Wegen seiner reichen und interessanten Stoffauswahl und der Ökonomie der Darstellung ist das Buch sowohl als Grundlage von Vorlesungen wie zum Selbststudium bestens geeignet." #Internationale Mathematische Nachrichten#1 In der nun 3. Auflage finden sich auf oft geäußerten Wunsch erneut zahlreiche Übungsaufgaben.
Inhaltsverzeichnis
1 Allgemeine Grundbegriffe.- 1.1 Mengen und Abbildungen.- 1.2 Gruppen.- 1.3 Gruppenmorphismen.- 1.4 Äquivalenzrelationen und Quotientengruppen.- 1.5 Ringe und Körper.- 2 Vektorräume.- 2.1 Moduln und Vektorräume.- 2.2 Lineare Abbildungen.- 2.3 Erzeugendensysteme und freie Systeme.- 2.4 Basissysteme.- 2.5 Endlichdimensionale Vektorräume.- 2.6 Lineare Komplemente.- 3 Matrizen.- 3.1 Vektorräume linearer Abbildungen.- 3.2 Dualräume.- 3.3 Die transponierte Abbildung.- 3.4 Matrizen.- 3.5 Das Matrizenprodukt.- 3.6 Der Rang.- 4 Lineare Gleichungen und Determinanten.- 4.1 Lineare Gleichungssysteme.- 4.2 Das Gaußsche Eliminationsverfahren.- 4.3 Die symmetrische Gruppe.- 4.4 Determinanten.- 4.5 Der Determinantenentwicklungssatz.- 5 Eigenwerte und Normalformen.- 5.1 Eigenwerte.- 5.2 Normalformen. Elementare Theorie.- 5.3 Der Satz von Hamilton-Cayley.- 5.4 Die Jordan-Normalform.- 5.5 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten (komplexer Fall).- 5.6 Die Jordan-Normalform über ?..- 5.7 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten (reeller Fall).- 6 Metrische Vektorräume.- 6.1 Unitäre Vektorräume.- 6.2 Normierte Vektorräume.- 6.3 Hilberträume.- 6.4 Lineare Operatoren. Die unitäre Gruppe.- 6.5 Hermitesche Formen.- 7 Affine Geometrie.- 7.1 Der affine Raum.- 7.2 Affinitäten und Kollineationen. Der Fundamentalsatz.- 7.3 Lineare Funktionen.- 7.4 Affine Quadriken.- 8 Euklidische Geometrie.- 8.1 Der affin-unitäre Raum.- 8.2 Lineare und quadratische Funktionen.- 8.3 Der Winkel.- 8.4 Anhang: Quaternionen und SO(3), SO(4).- 8.5 Dreieckslehre.- 8.6 Kegelschnitte.- 9 Projektive Geometrie.- 9.1 Der projektive Raum.- 9.2 Die projektive Erweiterung eines affinen Raumes.- 9.3 Anhang: Allgemeine projektive und affine Ebenen.- 9.4 DasDoppelverhältnis. Der Satz von v. Staudt.- 9.5 Quadriken und Polaritäten.- 10 Nichteuklidische Geometrie.- 10.1 Der hyperbolische Raum.- 10.2 Das konforme Modell des hyperbolischen Raumes.- 10.3 Elliptische Geometrie.- 10.4 Das konforme Modell des elliptischen Raumes.- 10.5 Cliffordparallelen.- 10.6 Sphärische Geometrie und Dreieckslehre.- Literaturhinweise.
Details
Erscheinungsjahr: 1992
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer-Lehrbuch
Inhalt: xiv
293 S.
ISBN-13: 9783540556732
ISBN-10: 3540556737
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Klingenberg, Wilhelm
Auflage: 3. Aufl.
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Springer-Lehrbuch
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 17 mm
Von/Mit: Wilhelm Klingenberg
Erscheinungsdatum: 31.08.1992
Gewicht: 0,476 kg
Artikel-ID: 104756463
Inhaltsverzeichnis
1 Allgemeine Grundbegriffe.- 1.1 Mengen und Abbildungen.- 1.2 Gruppen.- 1.3 Gruppenmorphismen.- 1.4 Äquivalenzrelationen und Quotientengruppen.- 1.5 Ringe und Körper.- 2 Vektorräume.- 2.1 Moduln und Vektorräume.- 2.2 Lineare Abbildungen.- 2.3 Erzeugendensysteme und freie Systeme.- 2.4 Basissysteme.- 2.5 Endlichdimensionale Vektorräume.- 2.6 Lineare Komplemente.- 3 Matrizen.- 3.1 Vektorräume linearer Abbildungen.- 3.2 Dualräume.- 3.3 Die transponierte Abbildung.- 3.4 Matrizen.- 3.5 Das Matrizenprodukt.- 3.6 Der Rang.- 4 Lineare Gleichungen und Determinanten.- 4.1 Lineare Gleichungssysteme.- 4.2 Das Gaußsche Eliminationsverfahren.- 4.3 Die symmetrische Gruppe.- 4.4 Determinanten.- 4.5 Der Determinantenentwicklungssatz.- 5 Eigenwerte und Normalformen.- 5.1 Eigenwerte.- 5.2 Normalformen. Elementare Theorie.- 5.3 Der Satz von Hamilton-Cayley.- 5.4 Die Jordan-Normalform.- 5.5 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten (komplexer Fall).- 5.6 Die Jordan-Normalform über ?..- 5.7 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten (reeller Fall).- 6 Metrische Vektorräume.- 6.1 Unitäre Vektorräume.- 6.2 Normierte Vektorräume.- 6.3 Hilberträume.- 6.4 Lineare Operatoren. Die unitäre Gruppe.- 6.5 Hermitesche Formen.- 7 Affine Geometrie.- 7.1 Der affine Raum.- 7.2 Affinitäten und Kollineationen. Der Fundamentalsatz.- 7.3 Lineare Funktionen.- 7.4 Affine Quadriken.- 8 Euklidische Geometrie.- 8.1 Der affin-unitäre Raum.- 8.2 Lineare und quadratische Funktionen.- 8.3 Der Winkel.- 8.4 Anhang: Quaternionen und SO(3), SO(4).- 8.5 Dreieckslehre.- 8.6 Kegelschnitte.- 9 Projektive Geometrie.- 9.1 Der projektive Raum.- 9.2 Die projektive Erweiterung eines affinen Raumes.- 9.3 Anhang: Allgemeine projektive und affine Ebenen.- 9.4 DasDoppelverhältnis. Der Satz von v. Staudt.- 9.5 Quadriken und Polaritäten.- 10 Nichteuklidische Geometrie.- 10.1 Der hyperbolische Raum.- 10.2 Das konforme Modell des hyperbolischen Raumes.- 10.3 Elliptische Geometrie.- 10.4 Das konforme Modell des elliptischen Raumes.- 10.5 Cliffordparallelen.- 10.6 Sphärische Geometrie und Dreieckslehre.- Literaturhinweise.
Details
Erscheinungsjahr: 1992
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Springer-Lehrbuch
Inhalt: xiv
293 S.
ISBN-13: 9783540556732
ISBN-10: 3540556737
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Klingenberg, Wilhelm
Auflage: 3. Aufl.
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Springer-Lehrbuch
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 17 mm
Von/Mit: Wilhelm Klingenberg
Erscheinungsdatum: 31.08.1992
Gewicht: 0,476 kg
Artikel-ID: 104756463
Sicherheitshinweis