Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
This is a carefully written, clear account of elementary linear algebra with good problems and interesting historical sidelights. It will be used for collateral reading and primary reference by many students. The text, written by a very well-known author, includes many exercises and good examples.
This is a carefully written, clear account of elementary linear algebra with good problems and interesting historical sidelights. It will be used for collateral reading and primary reference by many students. The text, written by a very well-known author, includes many exercises and good examples.
Zusammenfassung
This is a carefully written, clear account of elementary linear algebra with good problems and interesting historical sidelights. It will be used for collateral reading and primary reference by many students. The text, written by a very well-known author, includes many exercises and good examples.
Inhaltsverzeichnis
1. Sets and Maps.- 1.1 Sets.- 1.2 Maps.- 1.3 Test.- 1.4 Remarks on the Literature.- 1.5 Exercises.- 2. Vector Spaces.- 2.1 Real Vector Spaces.- 2.2 Complex Numbers and Complex Vector Spaces.- 2.3 Vector Subspaces.- 2.4 Test.- 2.5 Fields.- 2.6 What Are Vectors?.- 2.7 Complex Numbers 400 Years Ago.- 2.8 Remarks on the Literature.- 2.9 Exercises.- 3. Dimension.- 3.1 Linear Independence.- 3.2 The Concept of Dimension.- 3.3 Test.- 3.4 Proof of the Basis Extension Theorem and the Exchange Lemma.- 3.5 The Vector Product.- 3.6 The "Steinitz Exchange Theorem".- 3.7 Exercises.- 4. Linear Maps.- 4.1 Linear Maps.- 4.2 Matrices.- 4.3 Test.- 4.4 Quotient Spaces.- 4.5 Rotations and Reflections in the Plane.- 4.6 Historical Aside.- 4.7 Exercises.- 5. Matrix Calculus.- 5.1 Multiplication.- 5.2 The Rank of a Matrix.- 5.3 Elementary Transformations.- 5.4 Test.- 5.5 How Does One Invert a Matrix?.- 5.6 Rotations and Reflections (continued).- 5.7 Historical Aside.- 5.8 Exercises.- 6. Determinants.- 6.1 Determinants.- 6.2 Determination of Determinants.- 6.3 The Determinant of the Transposed Matrix.- 6.4 Determinantal Formula for the Inverse Matrix.- 6.5 Determinants and Matrix Products.- 6.6 Test.- 6.7 Determinant of an Endomorphism.- 6.8 The Leibniz Formula.- 6.9 Historical Aside.- 6.10 Exercises.- 7. Systems of Linear Equations.- 7.1 Systems of Linear Equations.- 7.2 Cramer's Rule.- 7.3 Gaussian Elimination.- 7.4 Test.- 7.5 More on Systems of Linear Equations.- 7.6 Captured on Camera!.- 7.7 Historical Aside.- 7.8 Remarks on the Literature.- 7.9 Exercises.- 8. Euclidean Vector Spaces.- 8.1 Inner Products.- 8.2 Orthogonal Vectors.- 8.3 Orthogonal Maps.- 8.4 Groups.- 8.5 Test.- 8.6 Remarks on the Literature.- 8.7 Exercises.- 9. Eigenvalues.- 9.1 Eigenvalues and Eigenvectors.- 9.2 TheCharacteristic Polynomial.- 9.3 Test.- 9.4 Polynomials.- 9.5 Exercises.- 10. The Principal Axes Transformation.- 10.1 Self-Adjoint Endomorphisms.- 10.2 Symmetric Matrices.- 10.3 The Principal Axes Transformation for Self-Adjoint Endomorphisms.- 10.4 Test.- 10.5 Exercises.- 11. Classification of Matrices.- 11.1 What Is Meant by "Classification"?.- 11.2 The Rank Theorem.- 11.3 The Jordan Normal Form.- 11.4 More on the Principal Axes Transformation.- 11.5 The Sylvester Inertia Theorem.- 11.6 Test.- 11.7 Exercises.- 12. Answers to the Tests.- References.
Details
Erscheinungsjahr: 2011
Fachbereich: Arithmetik & Algebra
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
206 S.
ISBN-13: 9781461287292
ISBN-10: 1461287294
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Jänich, Klaus
Hersteller: Humana
Springer
Springer US, New York, N.Y.
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 13 mm
Von/Mit: Klaus Jänich
Erscheinungsdatum: 26.09.2011
Gewicht: 0,341 kg
Artikel-ID: 106372123

Ähnliche Produkte

Taschenbuch