Dekorationsartikel gehören nicht zum Leistungsumfang.
                        Sprache:
                                                                                            Englisch
                                                    
                    93,20 €
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
            Kategorien:
        
                            
        
        
        
        
        
    
                    
                                                                                                                        
                                                                    
        
        
        
        
        
                                                
                            Beschreibung
                        
                    
                                                                        
                                        This textbook gives a detailed and comprehensive presentation of linear algebra. Several chapters have been substantially rewritten for clarity of exposition, although their basic content is unchanged. A considerable number of exercises covering new material has also been added.
                                    
                                    
                                        This textbook gives a detailed and comprehensive presentation of linear algebra. Several chapters have been substantially rewritten for clarity of exposition, although their basic content is unchanged. A considerable number of exercises covering new material has also been added.
                                    
                                                            
                                    Zusammenfassung
                                
                                
                                        This textbook gives a detailed and comprehensive presentation of linear algebra. Several chapters have been substantially rewritten for clarity of exposition, although their basic content is unchanged. A considerable number of exercises covering new material has also been added.
                                    
                                
                                    Inhaltsverzeichnis
                                
                                
                                        0. Prerequisites.- I. Vector spaces.- § 1. Vector spaces.- § 2. Linear mappings.- § 3. Subspaces and factor spaces.- § 4. Dimension.- § 5. The topology of a real finite dimensional vector space.- II. Linear mappings.- § 1. Basic properties.- § 2. Operations with linear mappings.- § 3. Linear isomorphisms.- § 4. Direct sum of vector spaces.- § 5. Dual vector spaces.- § 6. Finite dimensional vector spaces.- III. Matrices.- § 1. Matrices and systems of linear equations.- § 2. Multiplication of matrices.- § 3. Basis transformation.- § 4. Elementary transformations.- IV. Determinants.- § 1. Determinant functions.- § 2. The determinant of a linear transformation.- § 3. The determinant of a matrix.- § 4. Dual determinant functions.- § 5. The adjoint matrix.- § 6. The characteristic polynomial.- § 7. The trace.- § 8. Oriented vector spaces.- V. Algebras.- § 1. Basic properties.- § 2. Ideals.- § 3. Change of coefficient field of a vector space.- VI. Gradations and homology.- § 1. G-graded vector spaces.- § 2. G-graded algebras.- § 3. Differential spaces and differential algebras.- VII. Inner product spaces.- § 1. The inner product.- § 2. Orthonormal bases.- § 3. Normed determinant functions.- § 4. Duality in an inner product space.- § 5. Normed vector spaces.- § 6. The algebra of quaternions.- VIII. Linear mappings of inner product spaces.- § 1. The adjoint mapping.- § 2. Selfadjoint mappings.- § 3. Orthogonal projections.- § 4. Skew mappings.- § 5. Isometric mappings.- § 6. Rotations of Euclidean spaces of dimension 2, 3 and 4.- § 7. Differentiate families of linear automorphisms.- IX. Symmetric bilinear functions.- § 1. Bilinear and quadratic functions.- § 2. The decomposition of E.- § 3. Pairs of symmetric bilinear functions.- §4. Pseudo-Euclidean spaces.- § 5. Linear mappings of Pseudo-Euclidean spaces.- X. Quadrics.- § 1. Affine spaces.- § 2. Quadrics in the affine space.- § 3. Affine equivalence of quadrics.- § 4. Quadrics in the Euclidean space.- XI. Unitary spaces.- § 1. Hermitian functions.- § 2. Unitary spaces.- § 3. Linear mappings of unitary spaces.- § 4. Unitary mappings of the complex plane.- § 5. Application to Lorentz-transformations.- XII. Polynomial algebra.- § 1. Basic properties.- § 2. Ideals and divisibility.- § 3. Factor algebras.- § 4. The structure of factor algebras.- XIII. Theory of a linear transformation.- § 1. Polynomials in a linear transformation.- § 2. Generalized eigenspaces.- § 3. Cyclic spaces.- § 4. Irreducible spaces.- § 5. Application of cyclic spaces.- § 6. Nilpotent and semisimple transformations.- § 7. Applications to inner product spaces.
                                    
                                
        Details
    
    | Erscheinungsjahr: | 1975 | 
|---|---|
| Fachbereich: | Arithmetik & Algebra | 
| Genre: | Importe, Mathematik | 
| Rubrik: | Naturwissenschaften & Technik | 
| Medium: | Buch | 
| Inhalt: | xviii 452 S. | 
| ISBN-13: | 9780387901107 | 
| ISBN-10: | 0387901108 | 
| Sprache: | Englisch | 
| Einband: | Gebunden | 
| Autor: | Greub, Werner H. | 
| Auflage: | Fourth Edition 1975 | 
| Hersteller: | Springer Copernicus Springer US, New York, N.Y. | 
| Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com | 
| Maße: | 241 x 160 x 32 mm | 
| Von/Mit: | Werner H. Greub | 
| Erscheinungsdatum: | 30.06.1975 | 
| Gewicht: | 0,875 kg | 
 
                                                         
                                                         
                                                         
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            