Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Les Conjectures de Stark sur les Fonctions L d'Artin en s=0
Notes d'un cours a Orsay redigees par Dominique Bernardi
Buch von J. Tate
Sprache: Französisch

53,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This book presents a self-contained introduction to H.M. Stark¿s remarkable conjectures about the leading term of the Taylor expansion of Artin¿s L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet¿s class number formula and Kronecker¿s limit formula. They provide an unexpected contribution to Hilbert¿s 12th problem on the generalization of class fields by the values of transcendental functions.

This volume also treats these topics: a proof of the main conjecture for rational characters, and Chinburg¿s invariant; P. Delgne¿s proof of a function field analogue; p-adic versions of the conjectures due to B. Gross and J.-P. Serre.

This volume belongs on the shelf of every mathematics library.
This book presents a self-contained introduction to H.M. Stark¿s remarkable conjectures about the leading term of the Taylor expansion of Artin¿s L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet¿s class number formula and Kronecker¿s limit formula. They provide an unexpected contribution to Hilbert¿s 12th problem on the generalization of class fields by the values of transcendental functions.

This volume also treats these topics: a proof of the main conjecture for rational characters, and Chinburg¿s invariant; P. Delgne¿s proof of a function field analogue; p-adic versions of the conjectures due to B. Gross and J.-P. Serre.

This volume belongs on the shelf of every mathematics library.
Zusammenfassung

This book presents a self-contained introduction to H.M. Stark's remarkable conjectures about the leading term of the Taylor expansion of Artin's L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet's class number formula and Kronecker's limit formula. They provide an unexpected contribution to Hilbert's 12th problem on the generalization of class fields by the values of transcendental functions. This volume belongs on the shelf of every mathematics library.

Inhaltsverzeichnis

Introduction.-Fonctions L D'Artin.-La Conjecture Principale de Stark.-Caracteres a Valeurs Rationnelles.-Les Cas r(x)=0 et r(x)=1.-La Conjecture Plus Fine Dans le Cas Abelien.-Le Cas Des Corps de Fonctions.-Analogues p-Adiques des Conjectures de Stark.-Bibliographie.

Details
Erscheinungsjahr: 1984
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Progress in Mathematics
Inhalt: iv
148 S.
ISBN-13: 9780817631888
ISBN-10: 0817631887
Sprache: Französisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Tate, J.
Hersteller: Birkh„user Boston
Birkhäuser Boston
Progress in Mathematics
Maße: 241 x 160 x 14 mm
Von/Mit: J. Tate
Erscheinungsdatum: 01.01.1984
Gewicht: 0,407 kg
Artikel-ID: 102285858
Zusammenfassung

This book presents a self-contained introduction to H.M. Stark's remarkable conjectures about the leading term of the Taylor expansion of Artin's L-functions at s=0. These conjectures can be viewed as a vast generalization of Dirichlet's class number formula and Kronecker's limit formula. They provide an unexpected contribution to Hilbert's 12th problem on the generalization of class fields by the values of transcendental functions. This volume belongs on the shelf of every mathematics library.

Inhaltsverzeichnis

Introduction.-Fonctions L D'Artin.-La Conjecture Principale de Stark.-Caracteres a Valeurs Rationnelles.-Les Cas r(x)=0 et r(x)=1.-La Conjecture Plus Fine Dans le Cas Abelien.-Le Cas Des Corps de Fonctions.-Analogues p-Adiques des Conjectures de Stark.-Bibliographie.

Details
Erscheinungsjahr: 1984
Fachbereich: Arithmetik & Algebra
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Progress in Mathematics
Inhalt: iv
148 S.
ISBN-13: 9780817631888
ISBN-10: 0817631887
Sprache: Französisch
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Tate, J.
Hersteller: Birkh„user Boston
Birkhäuser Boston
Progress in Mathematics
Maße: 241 x 160 x 14 mm
Von/Mit: J. Tate
Erscheinungsdatum: 01.01.1984
Gewicht: 0,407 kg
Artikel-ID: 102285858
Warnhinweis