Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Lehninger Biochemistry: Core Concepts and Applications offers a streamlined, focused exploration of key biochemistry concepts, tailored for students in Chemistry, Biophysics, and other STEM fields. Authored by the creators of the renowned Lehninger Principles of Biochemistry, this text emphasises clear, concise explanations, supported by visually engaging figures and relevant medical applications. It's designed to help students grasp and master the fundamentals of biochemistry, providing a solid foundation for critical thinking and advanced study in the field.
Lehninger Biochemistry: Core Concepts and Applications offers a streamlined, focused exploration of key biochemistry concepts, tailored for students in Chemistry, Biophysics, and other STEM fields. Authored by the creators of the renowned Lehninger Principles of Biochemistry, this text emphasises clear, concise explanations, supported by visually engaging figures and relevant medical applications. It's designed to help students grasp and master the fundamentals of biochemistry, providing a solid foundation for critical thinking and advanced study in the field.
Inhaltsverzeichnis

Chapter 1: Biochemistry Concepts and Themes

1.1 Science and the Scientific Method

  • What is Science?
  • What is the Scientific Method?

1.2 Organisms, Cells, Chromosomes, and Genes

  • Organisms Belong to Three Distinct Domains of Life
  • Cells Are the Structural and Functional Units of All Living Organisms
  • Viruses Cannot Live Independently of Cells
  • Bacterial Cells Feature a Relatively Simple Architecture and Streamlined Lifestyles
  • Eukaryotic Cells Have a Variety of Membranous Organelles
  • Cells Contain a Wide Range of Supramolecular Structures
  • Major Model Organisms and Systems are Useful in Biochemistry
  • The Linear Sequence in DNA Encodes Proteins with Three-Dimensional Structures

1.3 The Organic Chemistry of Biochemistry

  • Major Organic Species are Found in Cells
  • Macromolecules Are the Major Constituents of Cells
  • Molecular Weight and Molecular Mass are Expressed by Distinct Conventions
  • Nucleophiles and Electrophiles Define How Many Reactions Proceed
  • Cofactors Facilitate Particular Classes of Biochemical Reactions

1.4 A Review of Basic Thermodynamics

  • Equilibrium Constants and Rate Constants Describe Distinct but Related Thermodynamic Parameters
  • Organisms Transform Energy and Matter from Their Surroundings
  • Creating and Maintaining Order Requires Work and Energy

1.5 Using Data Banks



Chapter 2: Water: The Chemistry of Life

2.1 Weak Interactions in Aqueous Systems

  • Hydrogen Bonds Give Water Its Unusual Properties
  • Water Interacts Electrostatically with Charged Solutes
  • Nonpolar Gases Are Poorly Soluble in Water
  • The Hydrophobic Effect is an Entropy-based Phenomenon
  • van der Waals Interactions and Other Weak Interactions Are Key to Macromolecular Structure and Function

2.2 Ionization of Water, Weak Acids, and Weak Bases

  • The Ionization of Water Is Expressed by an Equilibrium Constant
  • The pH Scale Designates H+ and OH- Concentrations
  • Weak Acids and Bases Have Characteristic Acid Dissociation Constants
  • Titration Curves Reveal the pKa of Weak Acids

2.3 Buffering against pH Changes in Biological Systems

  • A Buffer System Resists Changes in pH in Response to Added Acid or Base.
  • The Henderson-Hasselbalch Equation Relates pH, pKa, and Buffer Concentration
  • Weak Acids or Bases Buffer Cells and Tissues against pH Changes
  • Phosphate and Bicarbonate Are Important Biological Buffer Systems Untreated Diabetes Produces Life-Threatening Acidosis


Chapter 3: Amino Acids, Peptides, and Proteins

3.1 Amino Acids

  • What is an Amino Acid?
  • The Amino Acid Residues in Proteins Are L Stereoisomers
  • Amino Acids Can Be Classified by R Group
  • Some Amino Acids Absorb Ultraviolet Light
  • Uncommon Amino Acids Also Have Important Functions
  • Amino Acids Can Act as Acids and Bases
  • Amino Acids Differ in Their Acid-Base Properties

3.2 Peptides and Proteins

  • Peptides Are Chains of Amino Acids
  • Disulfide Bonds Occur in Some Proteins
  • Ionization Behavior Can Distinguish Peptides
  • Some Proteins Contain Chemical Groups Other Than Amino Acids

3.3 Purifying Proteins

  • Proteins Can Be Separated and Purified
  • Proteins Are Detected and Quantified Based on Their Functions
  • Proteins Can Be Separated and Characterized by Electrophoresis

3.4 The Primary Structure of Proteins and Protein Chemistry

  • There are Levels of Complexity to Protein Structure
  • The Function of a Protein Depends on Its Amino Acid Sequence
  • There are Multiple Ways to Reduce a Polypeptide Chain into Fragments.
  • Mass Spectrometry Provides Information on Molecular Mass, Amino Acid Sequence, and Entire Proteomes
  • Amino Acid Sequences Provide Important Biochemical and Evolutionary Information


Chapter 4: Protein Structure

4.1 Forces and Interactions that Stabilize Protein Structures

  • Protein Structures Are Largely Stabilized by Weak Interactions
  • Hydrogen Bonding, Ion Pairs, and van der Waals Interactions Also Contribute to Protein Folding
  • The Conformation of the Peptide Bond Constrains Polypeptide Conformation

4.2 Secondary Protein Structure

  • The ¿ Helix Maximizes the Use of Polypeptide Hydrogen Bonds
  • The ß Strand is a Common Secondary Structure with an Extended Conformation
  • Ramachandran Plots Describe the Distribution of Secondary Structure in a Protein

4.3 Tertiary and Quaternary Protein Structure

  • Fibrous Proteins Have a Single Type of Secondary Structure
  • The Fibrous Protein Collagen is the Most Abundant Protein in Mammals
  • Silk is Made from a Fibrous Protein with b-sheet Secondary Structure
  • Globular Proteins are Compact and Highly Varied in Three Dimensional Structure
  • Protein Tertiary Structures can be Described in Terms of Motifs and Domains.
  • Intrinsically Disordered Proteins Lack Stable Tertiary Structures.
  • Quaternary Structure Describes the Organization of Multisubunit Proteins.
  • Biomolecular Structures Can be Determined Using a Variety of Methods
  • The Protein Data Bank is a Repository for Biomolecular Structures

4.4 Protein Denaturation and Folding

  • Loss of Protein Structure Results in Loss of Function
  • Amino Acid Sequence Determines Tertiary Structure
  • Protein Folding Occurs by Defined Pathways and can be Assisted by Chaperones.
  • Defects in Protein Folding Cause Human Disease


Chapter 5: Protein Function and Ligand Binding

5.1 Reversible Protein-Ligand Binding

  • Ligands Bind to Proteins Reversibly at Binding Sites
  • Protein-Ligand Interactions Can Be Described Quantitatively

5.2 Reversible Binding of a Protein to a Ligand: Oxygen-Binding by Myoglobin

  • Oxygen Can Bind to a Heme Prosthetic Group
  • Globins Are a Family of Oxygen-Binding Proteins
  • The Binding of Oxygen to Myoglobin can be Described Quantitatively
  • Protein Structure Affects How Ligands Bind

5.3 Reversible and Cooperative Binding of a Protein to a Ligand: Oxygen-Binding by Hemoglobin

  • Hemoglobin Subunits Are Structurally Similar to Myoglobin
  • Hemoglobin Undergoes a Structural Change on Binding Oxygen
  • Hemoglobin Binds Oxygen Cooperatively
  • Cooperative Ligand Binding Can Be Described Quantitatively
  • Hemoglobin Also Transports H+ and CO2

5.4 Medical Conditions Related to Hemoglobin

  • CO Binding to Hemoglobin Poses a Serious Health Risk
  • Altered Hemoglobin Subunit Interactions in Sickle Cell Anemia Cause Pain and Suffering


Chapter 6: Protein Function and Enzymes

6.1 What are Enzymes?

  • Most Enzymes Are Proteins
  • Enzyme-catalyzed Reactions Occur Within Active Sites
  • Enzymes Affect Reaction Rates, Not Equilibria
  • Reaction Rates and Equilibria are Described by Constants

6.2 How Enzymes Work

  • Noncovalent Interactions between Enzyme and Substrate Are Optimized in the Transition State
  • Enzymes Use a Variety of Additional Chemical Mechanisms to Facilitate Catalysis
  • Coenzymes Facilitate Particular Types of Reactions

6.3 Enzyme Kinetics

  • The Steady State of an Enzyme-catalyzed Reaction Reflects the Concentration of ES
  • The Relationship Between Substrate Concentration and Reaction Rate can be Described Quantitatively
  • Scientists Compare Enzymes Using Vmax and Km.
  • Enzymes are Subject to Reversible and Irreversible Inhibition

6.4 Chymotrypsin and Enzymatic Catalysis

  • The Chymotrypsin Mechanism Involves Acylation and Deacylation of an Active Site Ser Residue
  • An Understanding of Protease Mechanisms Led to Treatments for HIV
  • An Understanding of Enzyme Mechanism Leads to Useful Antibiotics

6.5 Regulatory Enzymes

  • Some Enzymes are Regulated by Allosteric Conformational Changes in Response to Modulator Binding
  • Some Enzymes are Regulated by Reversible Covalent Modification
  • Some Enzymes are Regulated by Proteolytic Cleavage of an Enzyme Precursor


Chapter 7: Carbohydrates

7.1 Monosaccharides and Disaccharides

  • The Two Families of Monosaccharides Are Aldoses and Ketoses
  • The Common Monosaccharides Have Cyclic Structures
  • Sugars Containing and Forming Aldehydes are Reducing Sugars
  • Disaccharides Consist of Two Monosaccharides Joined by a Glycosidic Bond

7.2 Polysaccharides

  • Some Homopolysaccharides Are Storage Forms of Fuel While Others have Structural Roles
  • Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix

7.3 Glycoconjugates: Peptidoglycans, Proteoglycans, Glycoproteins, and Glycolipids

  • Peptidoglycan Reinforces the Bacterial Cell Wall
  • Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix
  • Glycoproteins Are Proteins with Covalently Attached Oligosaccharides
  • Glycolipids and Lipopolysaccharides Are Membrane Components

7.4 Carbohydrates as Signaling Molecules

  • Oligosaccharides Have Highly Diverse Structures
  • Lectins Are Proteins That Bind Specifically to Complex Oligosaccharides and Mediate Many Biological Processes


Chapter 8: Lipids, Membranes, and Membrane Proteins

8.1 Membrane Lipids

  • Fatty Acids are the...
Details
Erscheinungsjahr: 2025
Fachbereich: Biophysik
Genre: Biologie, Importe
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
ISBN-13: 9781319589967
ISBN-10: 1319589960
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Cox, Michael M.
Hoskins, Aaron A.
Viel, Alain
Simcox, Judith
Hersteller: Macmillan Learning
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 274 x 215 x 25 mm
Von/Mit: Michael M. Cox (u. a.)
Erscheinungsdatum: 15.04.2025
Gewicht: 1,448 kg
Artikel-ID: 132603828

Ähnliche Produkte

Taschenbuch