Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Learning to Rank for Information Retrieval
Taschenbuch von Tie-Yan Liu
Sprache: Englisch

105,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Learning to Rank for Information Retrieval is an introduction to the field of learning to rank, a hot research topic in information retrieval and machine learning. It categorizes the state-of-the-art learning-to-rank algorithms into three approaches from a unified machine learning perspective, describes the loss functions and learning mechanisms in different approaches, reveals their relationships and differences, shows their empirical performances on real IR applications, and discusses their theoretical properties such as generalization ability. As a tutorial, Learning to Rank for Information Retrieval helps people find the answers to the following critical questions: To what respect are learning-to-rank algorithms similar and in which aspects do they differ? What are the strengths and weaknesses of each algorithm? Which learning-to-rank algorithm empirically performs the best? Is ranking a new machine learning problem? What are the unique theoretical issues for ranking as compared to classification and regression?

Learning to Rank for Information Retrieval is both a guide for beginners who are embarking on research in this area, and a useful reference for established researchers and practitioners.
Learning to Rank for Information Retrieval is an introduction to the field of learning to rank, a hot research topic in information retrieval and machine learning. It categorizes the state-of-the-art learning-to-rank algorithms into three approaches from a unified machine learning perspective, describes the loss functions and learning mechanisms in different approaches, reveals their relationships and differences, shows their empirical performances on real IR applications, and discusses their theoretical properties such as generalization ability. As a tutorial, Learning to Rank for Information Retrieval helps people find the answers to the following critical questions: To what respect are learning-to-rank algorithms similar and in which aspects do they differ? What are the strengths and weaknesses of each algorithm? Which learning-to-rank algorithm empirically performs the best? Is ranking a new machine learning problem? What are the unique theoretical issues for ranking as compared to classification and regression?

Learning to Rank for Information Retrieval is both a guide for beginners who are embarking on research in this area, and a useful reference for established researchers and practitioners.
Details
Erscheinungsjahr: 2009
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781601982445
ISBN-10: 1601982445
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Liu, Tie-Yan
Hersteller: Now Publishers Inc
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 234 x 156 x 7 mm
Von/Mit: Tie-Yan Liu
Erscheinungsdatum: 27.06.2009
Gewicht: 0,199 kg
Artikel-ID: 109212945
Details
Erscheinungsjahr: 2009
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9781601982445
ISBN-10: 1601982445
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Liu, Tie-Yan
Hersteller: Now Publishers Inc
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 234 x 156 x 7 mm
Von/Mit: Tie-Yan Liu
Erscheinungsdatum: 27.06.2009
Gewicht: 0,199 kg
Artikel-ID: 109212945
Sicherheitshinweis