Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Knowledge Discovery in Databases
Techniken und Anwendungen
Taschenbuch von Jörg Sander (u. a.)
Sprache: Deutsch

54,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar.
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar.
Zusammenfassung
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar. Sie liefern dem Leser das Basiswissen, um eigene Anwendungen und Algorithmen zu entwickeln.
Inhaltsverzeichnis
1.1 Grundbegriffe des Knowledge Discovery in Databases.- 1.2 Typische KDD-Anwendungen.- 1.3 Inhalt und Aufbau dieses Buches.- 1.4 Literatur.- Grundlagen.- 2.1 Datenbanksysteme.- 2.2 Statistik.- 2.3 Literatur.- Clustering.- 3.1 Einleitung.- 3.2 Partitionierende Verfahren.- 3.3 Hierarchische Verfahren.- 3.4 Datenbanktechniken zur Leistungssteigerung.- 3.5 Besondere Anforderungen und Verfahren.- 3.6 Zusammenfassung.- 3.7 Literatur.- Klassifikation.- 4.1 Einleitung.- 4.2 Bayes-Klassifikatoren.- 4.3 Nächste-Nachbarn-Klassifikatoren.- 4.4 Entscheidungsbaum-Klassifikatoren.- 4.5 Skalierung für große Datenbanken.- 4.6 Zusammenfassung.- 4.7 Literatur.- Assoziationsregeln.- 5.1 Einleitung.- 5.2 Einfache Assoziationsregeln: Der Apriori-Algorithmus.- 5.3 Hierarchische Assoziationsregeln bezüglich Item-Taxonomien.- 5.4 Quantitative Assoziationsregeln.- 5.5 Zusammenfassung.- 5.6 Literatur.- Generalisierung.- 6.1 Einleitung.- 6.2 Data Cubes.- 6.3 Effiziente Anfragebearbeitung in Data Cubes.- 6.4 Attributorientierte Induktion.- 6.5 Inkrementelle attributorientierte Induktion.- 6.6 Zusammenfassung.- 6.7 Literatur.- Besondere Datentypen und Anwendungen.- 7.1 Temporal Data Mining.- 7.2 Spatial Data Mining.- 7.3 Text-und Web-Mining.- 7.4 Literatur.- Andere Paradigmen.- 8.1 Induktive Logik-Programmierung.- 8.2 Genetische Algorithmen.- 8.3 Neuronale Netze.- 8.4 Selbstorganisierende Karten (Kohonen Maps).- 8.5 Literatur.
Details
Erscheinungsjahr: 2000
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
282 S.
42 s/w Illustr.
282 S. 42 Abb.
ISBN-13: 9783540673286
ISBN-10: 3540673288
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Sander, Jörg
Ester, Martin
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Maße: 235 x 155 x 16 mm
Von/Mit: Jörg Sander (u. a.)
Erscheinungsdatum: 27.09.2000
Gewicht: 0,446 kg
Artikel-ID: 102544174
Zusammenfassung
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar. Sie liefern dem Leser das Basiswissen, um eigene Anwendungen und Algorithmen zu entwickeln.
Inhaltsverzeichnis
1.1 Grundbegriffe des Knowledge Discovery in Databases.- 1.2 Typische KDD-Anwendungen.- 1.3 Inhalt und Aufbau dieses Buches.- 1.4 Literatur.- Grundlagen.- 2.1 Datenbanksysteme.- 2.2 Statistik.- 2.3 Literatur.- Clustering.- 3.1 Einleitung.- 3.2 Partitionierende Verfahren.- 3.3 Hierarchische Verfahren.- 3.4 Datenbanktechniken zur Leistungssteigerung.- 3.5 Besondere Anforderungen und Verfahren.- 3.6 Zusammenfassung.- 3.7 Literatur.- Klassifikation.- 4.1 Einleitung.- 4.2 Bayes-Klassifikatoren.- 4.3 Nächste-Nachbarn-Klassifikatoren.- 4.4 Entscheidungsbaum-Klassifikatoren.- 4.5 Skalierung für große Datenbanken.- 4.6 Zusammenfassung.- 4.7 Literatur.- Assoziationsregeln.- 5.1 Einleitung.- 5.2 Einfache Assoziationsregeln: Der Apriori-Algorithmus.- 5.3 Hierarchische Assoziationsregeln bezüglich Item-Taxonomien.- 5.4 Quantitative Assoziationsregeln.- 5.5 Zusammenfassung.- 5.6 Literatur.- Generalisierung.- 6.1 Einleitung.- 6.2 Data Cubes.- 6.3 Effiziente Anfragebearbeitung in Data Cubes.- 6.4 Attributorientierte Induktion.- 6.5 Inkrementelle attributorientierte Induktion.- 6.6 Zusammenfassung.- 6.7 Literatur.- Besondere Datentypen und Anwendungen.- 7.1 Temporal Data Mining.- 7.2 Spatial Data Mining.- 7.3 Text-und Web-Mining.- 7.4 Literatur.- Andere Paradigmen.- 8.1 Induktive Logik-Programmierung.- 8.2 Genetische Algorithmen.- 8.3 Neuronale Netze.- 8.4 Selbstorganisierende Karten (Kohonen Maps).- 8.5 Literatur.
Details
Erscheinungsjahr: 2000
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: viii
282 S.
42 s/w Illustr.
282 S. 42 Abb.
ISBN-13: 9783540673286
ISBN-10: 3540673288
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Sander, Jörg
Ester, Martin
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Maße: 235 x 155 x 16 mm
Von/Mit: Jörg Sander (u. a.)
Erscheinungsdatum: 27.09.2000
Gewicht: 0,446 kg
Artikel-ID: 102544174
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte