Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Deutsch
54,99 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar.
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar.
Zusammenfassung
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar. Sie liefern dem Leser das Basiswissen, um eigene Anwendungen und Algorithmen zu entwickeln.
Inhaltsverzeichnis
1.1 Grundbegriffe des Knowledge Discovery in Databases.- 1.2 Typische KDD-Anwendungen.- 1.3 Inhalt und Aufbau dieses Buches.- 1.4 Literatur.- Grundlagen.- 2.1 Datenbanksysteme.- 2.2 Statistik.- 2.3 Literatur.- Clustering.- 3.1 Einleitung.- 3.2 Partitionierende Verfahren.- 3.3 Hierarchische Verfahren.- 3.4 Datenbanktechniken zur Leistungssteigerung.- 3.5 Besondere Anforderungen und Verfahren.- 3.6 Zusammenfassung.- 3.7 Literatur.- Klassifikation.- 4.1 Einleitung.- 4.2 Bayes-Klassifikatoren.- 4.3 Nächste-Nachbarn-Klassifikatoren.- 4.4 Entscheidungsbaum-Klassifikatoren.- 4.5 Skalierung für große Datenbanken.- 4.6 Zusammenfassung.- 4.7 Literatur.- Assoziationsregeln.- 5.1 Einleitung.- 5.2 Einfache Assoziationsregeln: Der Apriori-Algorithmus.- 5.3 Hierarchische Assoziationsregeln bezüglich Item-Taxonomien.- 5.4 Quantitative Assoziationsregeln.- 5.5 Zusammenfassung.- 5.6 Literatur.- Generalisierung.- 6.1 Einleitung.- 6.2 Data Cubes.- 6.3 Effiziente Anfragebearbeitung in Data Cubes.- 6.4 Attributorientierte Induktion.- 6.5 Inkrementelle attributorientierte Induktion.- 6.6 Zusammenfassung.- 6.7 Literatur.- Besondere Datentypen und Anwendungen.- 7.1 Temporal Data Mining.- 7.2 Spatial Data Mining.- 7.3 Text-und Web-Mining.- 7.4 Literatur.- Andere Paradigmen.- 8.1 Induktive Logik-Programmierung.- 8.2 Genetische Algorithmen.- 8.3 Neuronale Netze.- 8.4 Selbstorganisierende Karten (Kohonen Maps).- 8.5 Literatur.
Details
Erscheinungsjahr: | 2000 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
viii
282 S. 42 s/w Illustr. 282 S. 42 Abb. |
ISBN-13: | 9783540673286 |
ISBN-10: | 3540673288 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Sander, Jörg
Ester, Martin |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg |
Maße: | 235 x 155 x 16 mm |
Von/Mit: | Jörg Sander (u. a.) |
Erscheinungsdatum: | 27.09.2000 |
Gewicht: | 0,446 kg |
Zusammenfassung
Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar. Sie liefern dem Leser das Basiswissen, um eigene Anwendungen und Algorithmen zu entwickeln.
Inhaltsverzeichnis
1.1 Grundbegriffe des Knowledge Discovery in Databases.- 1.2 Typische KDD-Anwendungen.- 1.3 Inhalt und Aufbau dieses Buches.- 1.4 Literatur.- Grundlagen.- 2.1 Datenbanksysteme.- 2.2 Statistik.- 2.3 Literatur.- Clustering.- 3.1 Einleitung.- 3.2 Partitionierende Verfahren.- 3.3 Hierarchische Verfahren.- 3.4 Datenbanktechniken zur Leistungssteigerung.- 3.5 Besondere Anforderungen und Verfahren.- 3.6 Zusammenfassung.- 3.7 Literatur.- Klassifikation.- 4.1 Einleitung.- 4.2 Bayes-Klassifikatoren.- 4.3 Nächste-Nachbarn-Klassifikatoren.- 4.4 Entscheidungsbaum-Klassifikatoren.- 4.5 Skalierung für große Datenbanken.- 4.6 Zusammenfassung.- 4.7 Literatur.- Assoziationsregeln.- 5.1 Einleitung.- 5.2 Einfache Assoziationsregeln: Der Apriori-Algorithmus.- 5.3 Hierarchische Assoziationsregeln bezüglich Item-Taxonomien.- 5.4 Quantitative Assoziationsregeln.- 5.5 Zusammenfassung.- 5.6 Literatur.- Generalisierung.- 6.1 Einleitung.- 6.2 Data Cubes.- 6.3 Effiziente Anfragebearbeitung in Data Cubes.- 6.4 Attributorientierte Induktion.- 6.5 Inkrementelle attributorientierte Induktion.- 6.6 Zusammenfassung.- 6.7 Literatur.- Besondere Datentypen und Anwendungen.- 7.1 Temporal Data Mining.- 7.2 Spatial Data Mining.- 7.3 Text-und Web-Mining.- 7.4 Literatur.- Andere Paradigmen.- 8.1 Induktive Logik-Programmierung.- 8.2 Genetische Algorithmen.- 8.3 Neuronale Netze.- 8.4 Selbstorganisierende Karten (Kohonen Maps).- 8.5 Literatur.
Details
Erscheinungsjahr: | 2000 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
viii
282 S. 42 s/w Illustr. 282 S. 42 Abb. |
ISBN-13: | 9783540673286 |
ISBN-10: | 3540673288 |
Sprache: | Deutsch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Sander, Jörg
Ester, Martin |
Hersteller: |
Springer-Verlag GmbH
Springer Berlin Heidelberg |
Maße: | 235 x 155 x 16 mm |
Von/Mit: | Jörg Sander (u. a.) |
Erscheinungsdatum: | 27.09.2000 |
Gewicht: | 0,446 kg |
Warnhinweis