Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Kittel's Introduction to Solid State Physics, Global Edition
Taschenbuch von Charles Kittel
Sprache: Englisch

77,10 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Seit Erscheinen der 1. Auflage vor über 60 Jahren ist Kittel's Introduction to Solid State Physics, Global Edition das Standardwerk der Festkörperphysik für Studierende im Hauptfach Physik. Der Schwerpunkt lag schon immer auf der Physik und weniger auf der formalen Mathematik. Geschrieben wurde das Werk mit dem Ziel ein Lehrbuch zu schaffen, das für Studenten im Grundstudium zugänglich und von Dozenten durchgängig in Vorlesungen eingesetzt werden kann. Mit jeder neuen Ausgabe hat der Autor versucht, wichtige Neuentwicklungen in dem Fachgebiet aufzunehmen und gleichzeitig die Inhalte in ihrer Gesamtheit beizubehalten. Diese Global Edition bietet den Vorteil erweiterter Problemstellungen am Ende jedes Kapitels.
Seit Erscheinen der 1. Auflage vor über 60 Jahren ist Kittel's Introduction to Solid State Physics, Global Edition das Standardwerk der Festkörperphysik für Studierende im Hauptfach Physik. Der Schwerpunkt lag schon immer auf der Physik und weniger auf der formalen Mathematik. Geschrieben wurde das Werk mit dem Ziel ein Lehrbuch zu schaffen, das für Studenten im Grundstudium zugänglich und von Dozenten durchgängig in Vorlesungen eingesetzt werden kann. Mit jeder neuen Ausgabe hat der Autor versucht, wichtige Neuentwicklungen in dem Fachgebiet aufzunehmen und gleichzeitig die Inhalte in ihrer Gesamtheit beizubehalten. Diese Global Edition bietet den Vorteil erweiterter Problemstellungen am Ende jedes Kapitels.
Inhaltsverzeichnis

Chapter 1: Crystal Structure 1

Periodic Arrays of Atoms 3

Lattice Translation Vectors 4

Basis and the Crystal Structure 5

Primitive Lattice Cell 6

Fundamental Types of Lattices 6

Two-Dimensional Lattice Types 8

Three-Dimensional Lattice Types 9

Index Systems for Crystal Planes 11

Simple Crystal Structures 13

Sodium Chloride Structure 13

Cesium Chloride Structure 14

Hexagonal Close-Packed Structure (hcp) 15

Diamond Structure 16

Cubic Zinc Sulfide Structure 17

Direct Imaging of Atomic Structure 18

Nonideal Crystal Structures 18

Random Stacking and Polytypism 19

Crystal Structure Data 19

Summary 22

Problems 22

Chapter 2: Wave Diffraction And The Reciprocal Lattice 25

Diffraction of Waves by Crystals 27

The Bragg Law 27

Scattered Wave Amplitude 28

Fourier Analysis 29

Reciprocal Lattice Vectors 31

Diffraction Conditions 32

Laue Equations 34

Brillouin Zones 35

Reciprocal Lattice to sc Lattice 36

Reciprocal Lattice to bcc Lattice 38

Reciprocal Lattice to fcc Lattice 39

Fourier Analysis of the Basis 41

Structure Factor of the bcc Lattice 42

Structure Factor of the fcc Lattice 42

Atomic Form Factor 43

Summary 45

Problems 45

Chapter 3: Crystal Binding And Elastic Constants 49

Crystals of Inert Gases 51

Van der Waals-London Interaction 55

Repulsive Interaction 58

Equilibrium Lattice Constants 60

Cohesive Energy 61

Ionic Crystals 62

Electrostatic or Madelung Energy 62

Evaluation of the Madelung Constant 66

Covalent Crystals 69

Metals 71

Hydrogen Bonds 72

Atomic Radii 72

Ionic Crystal Radii 74

Analysis of Elastic Strains 75

Dilation 77

Stress Components 77

Elastic Compliance and Stiffness Constants 79

Elastic Energy Density 79

Elastic Stiffness Constants of Cubic Crystals 80

Bulk Modulus and Compressibility 82

Elastic Waves in Cubic Crystals 82

Waves in the [100] Direction 83

Waves in the [110] Direction 84

Summary 87

Problems 87

Chapter 4: phonons I. Crystal vibrations 91

Vibrations of Crystals with Monatomic Basis 93

First Brillouin Zone 95

Group Velocity 96

Long Wavelength Limit 96

Derivation of Force Constants from Experiment 96

Two Atoms per Primitive Basis 97

Quantization of Elastic Waves 101

Phonon Momentum 102

Inelastic Scattering by Phonons 102

Summary 104

Problems 104

Chapter 5: phonons 11. Thermal properties 107

Phonon Heat Capacity 109

Planck Distribution 109

Normal Mode Enumeration 110

Density of States in One Dimension 110

Density of States in Three Dimensions 113

Debye Model for Density of States 114

Debye T3 Law 116

Einstein Model of the Density of States 116

General Result for D( ) 119

Anharmonic Crystal Interactions 121

Thermal Expansion 122

Thermal Conductivity 123

Thermal Resistivity of Phonon Gas 125

Umklapp Processes 127

Imperfections 128

Problems 130

Chapter 6: Free Electron Fermi Gas 133

Energy Levels in One Dimension 136

Effect of Temperature on the FermiDirac Distribution 138

Free Electron Gas in Three Dimensions 139

Heat Capacity of the Electron Gas 143

Experimental Heat Capacity of Metals 147

Heavy Fermions 149

Electrical Conductivity and Ohm's Law 149

Experimental Electrical Resistivity of Metals 150

Umklapp Scattering 153

Motion in Magnetic Fields 154

Hall Effect 155

Thermal Conductivity of Metals 158

Ratio of Thermal to Electrical Conductivity 158

Problems 159

Chapter 7: Energy Bands 163

Nearly Free Electron Model 166

Origin of the Energy Gap 167

Magnitude of the Energy Gap 169

Bloch Functions 169

Kronig-Penney Model 170

Wave Equation of Electron in a Periodic Potential 171

Restatement of the Bloch Theorem 175

Crystal Momentum of an Electron 175

Solution of the Central Equation 176

Kronig-Penney Model in Reciprocal Space 176

Empty Lattice Approximation 178

Approximate Solution Near a Zone Boundary 179

Number of Orbitals in a Band 182

Metals and Insulators 183

Summary 184

Problems 184

Chapter 8: Semiconductor Crystals 187

Band Gap 189

Equations of Motion 193

Physical Derivation of 195

Holes 196

Effective Mass 199

Physical Interpretation of the Effective Mass 200

Effective Masses in Semiconductors 202

Silicon and Germanium 204

Intrinsic Carrier Concentration 207

Intrinsic Mobility 210

Impurity Conductivity 211

Donor States 211

Acceptor States 213

Thermal Ionization of Donors and Acceptors 215

Thermoelectric Effects 216

Semimetals 217

Superlattices 218

Bloch Oscillator 219

Zener Tunneling 219

Summary 219

Problems 220

Chapter 9: Fermi Surfaces And Metals 223

Reduced Zone Scheme 225

Periodic Zone Scheme 227

Construction of Fermi Surfaces 228

Nearly Free Electrons 230

Electron Orbits, Hole Orbits, and Open Orbits 232

Calculation of Energy Bands 234

Tight Binding Method for Energy Bands 234

Wigner-Seitz Method 238

Cohesive Energy 239

Pseudopotential Methods 241

Experimental Methods in Fermi Surface Studies 244

Quantization of Orbits in a Magnetic Field 244

De Haas-van Alphen Effect 246

Extremal Orbits 250

Fermi Surface of Copper 251

Magnetic Breakdown 253

Summary 254

Problems 254

Chapter 10: Superconductivity 259

Experimental Survey 261

Occurrence of Superconductivity 262

Destruction of Superconductivity by Magnetic Fields 264

Meissner Effect 264

Heat Capacity 266

Energy Gap 268

Microwave and Infrared Properties 270

Isotope Effect 271

Theoretical Survey 272

Thermodynamics of the Superconducting Transition 272

London Equation 275

Coherence Length 278

BCS Theory of Superconductivity 279

BCS Ground State 280

Flux Quantization in a Superconducting Ring 281

Duration of Persistent Currents 284

Type II Superconductors 285

Vortex State 286

Estimation of Hc1 and Hc2 286

Single Particle Tunneling 289

Josephson Superconductor Tunneling 291

Dc Josephson Effect 291

Ac Josephson Effect 292

Macroscopic Quantum Interference 294

High-Temperature Superconductors 295

Summary 296

Problems 296

Reference 298

Chapter 11: Diamagnetism And Paramagnetism 299

Langevin Diamagnetism Equation 301

Quantum Theory of Diamagnetism of Mononuclear Systems 303

Paramagnetism 304

Quantum Theory of Paramagnetism 304

Rare Earth Ions 307

Hund Rules 308

Iron Group Ions 309

Crystal Field Splitting 309

Quenching of the Orbital Angular Momentum 310

Spectroscopic Splitting Factor 313

Van Vleck Temperature-Independent Paramagnetism 313

Cooling by Isentropic Demagnetization 314

Nuclear Demagnetization 316

Paramagnetic Susceptibility of Conduction Electrons 317

Summary 319

Problems 320

Chapter 12: Ferromagnetism And Antiferromagnetism 323

Ferromagnetic Order 325

Curie Point and the Exchange Integral 325

Temperature Dependence of the Saturation

Magnetization 328

Saturation Magnetization at Absolute Zero 330

Magnons 332

Quantization of Spin Waves 335

Thermal Excitation of Magnons 336

Neutron Magnetic Scattering 337

Ferrimagnetic Order 338

Curie Temperature and Susceptibility of Ferrimagnets 340

Iron Garnets 341

Antiferromagnetic Order 342

Susceptibility Below the Néel Temperature 345

Antiferromagnetic Magnons 346

Ferromagnetic Domains 348

Anisotropy Energy 350

Transition Region Between Domains 351

Origin of Domains 353

Coercivity and Hysteresis 354

Single-Domain Particles 356

Geomagnetism and Biomagnetism 357

Magnetic Force Microscopy 357

Summary 359

Problems 359

Chapter 13: Magnetic Resonance 363

Nuclear Magnetic Resonance 365

Equations of Motion 368

Line Width 372

Motional Narrowing 373

Hyperfine Splitting 375

Examples: Paramagnetic Point Defects 377

F Centers in Alkali Halides 378

Donor Atoms in Silicon 378

Knight Shift 379

Nuclear Quadrupole Resonance 381

Ferromagnetic Resonance 381

Shape Effects in FMR 382

Spin Wave Resonance 384

Antiferromagnetic Resonance 385

Electron Paramagnetic Resonance 388

Exchange Narrowing 388

Zero-field Splitting 388

Principle of Maser Action 388

Three-Level Maser 390

Lasers 391

Summary 392

Problems 393

Chapter 14: Dielectrics And Ferroelectrics 395

Maxwell Equations 397

Polarization 397

Macroscopic Electric Field 398

Depolarization Field, E1 400

Local Electric Field at an Atom 402

Lorentz Field, E2 404

Field of Dipoles Inside Cavity, E3 404

Dielectric Constant and Polarizability 405

Electronic Polarizability 406

Classical Theory of Electronic...

Details
Erscheinungsjahr: 2018
Fachbereich: Atomphysik & Kernphysik
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 720 S.
ISBN-13: 9781119454168
ISBN-10: 1119454166
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Kittel, Charles
Hersteller: John Wiley & Sons Inc
Maße: 233 x 187 x 25 mm
Von/Mit: Charles Kittel
Erscheinungsdatum: 09.07.2018
Gewicht: 1,029 kg
Artikel-ID: 114720020
Inhaltsverzeichnis

Chapter 1: Crystal Structure 1

Periodic Arrays of Atoms 3

Lattice Translation Vectors 4

Basis and the Crystal Structure 5

Primitive Lattice Cell 6

Fundamental Types of Lattices 6

Two-Dimensional Lattice Types 8

Three-Dimensional Lattice Types 9

Index Systems for Crystal Planes 11

Simple Crystal Structures 13

Sodium Chloride Structure 13

Cesium Chloride Structure 14

Hexagonal Close-Packed Structure (hcp) 15

Diamond Structure 16

Cubic Zinc Sulfide Structure 17

Direct Imaging of Atomic Structure 18

Nonideal Crystal Structures 18

Random Stacking and Polytypism 19

Crystal Structure Data 19

Summary 22

Problems 22

Chapter 2: Wave Diffraction And The Reciprocal Lattice 25

Diffraction of Waves by Crystals 27

The Bragg Law 27

Scattered Wave Amplitude 28

Fourier Analysis 29

Reciprocal Lattice Vectors 31

Diffraction Conditions 32

Laue Equations 34

Brillouin Zones 35

Reciprocal Lattice to sc Lattice 36

Reciprocal Lattice to bcc Lattice 38

Reciprocal Lattice to fcc Lattice 39

Fourier Analysis of the Basis 41

Structure Factor of the bcc Lattice 42

Structure Factor of the fcc Lattice 42

Atomic Form Factor 43

Summary 45

Problems 45

Chapter 3: Crystal Binding And Elastic Constants 49

Crystals of Inert Gases 51

Van der Waals-London Interaction 55

Repulsive Interaction 58

Equilibrium Lattice Constants 60

Cohesive Energy 61

Ionic Crystals 62

Electrostatic or Madelung Energy 62

Evaluation of the Madelung Constant 66

Covalent Crystals 69

Metals 71

Hydrogen Bonds 72

Atomic Radii 72

Ionic Crystal Radii 74

Analysis of Elastic Strains 75

Dilation 77

Stress Components 77

Elastic Compliance and Stiffness Constants 79

Elastic Energy Density 79

Elastic Stiffness Constants of Cubic Crystals 80

Bulk Modulus and Compressibility 82

Elastic Waves in Cubic Crystals 82

Waves in the [100] Direction 83

Waves in the [110] Direction 84

Summary 87

Problems 87

Chapter 4: phonons I. Crystal vibrations 91

Vibrations of Crystals with Monatomic Basis 93

First Brillouin Zone 95

Group Velocity 96

Long Wavelength Limit 96

Derivation of Force Constants from Experiment 96

Two Atoms per Primitive Basis 97

Quantization of Elastic Waves 101

Phonon Momentum 102

Inelastic Scattering by Phonons 102

Summary 104

Problems 104

Chapter 5: phonons 11. Thermal properties 107

Phonon Heat Capacity 109

Planck Distribution 109

Normal Mode Enumeration 110

Density of States in One Dimension 110

Density of States in Three Dimensions 113

Debye Model for Density of States 114

Debye T3 Law 116

Einstein Model of the Density of States 116

General Result for D( ) 119

Anharmonic Crystal Interactions 121

Thermal Expansion 122

Thermal Conductivity 123

Thermal Resistivity of Phonon Gas 125

Umklapp Processes 127

Imperfections 128

Problems 130

Chapter 6: Free Electron Fermi Gas 133

Energy Levels in One Dimension 136

Effect of Temperature on the FermiDirac Distribution 138

Free Electron Gas in Three Dimensions 139

Heat Capacity of the Electron Gas 143

Experimental Heat Capacity of Metals 147

Heavy Fermions 149

Electrical Conductivity and Ohm's Law 149

Experimental Electrical Resistivity of Metals 150

Umklapp Scattering 153

Motion in Magnetic Fields 154

Hall Effect 155

Thermal Conductivity of Metals 158

Ratio of Thermal to Electrical Conductivity 158

Problems 159

Chapter 7: Energy Bands 163

Nearly Free Electron Model 166

Origin of the Energy Gap 167

Magnitude of the Energy Gap 169

Bloch Functions 169

Kronig-Penney Model 170

Wave Equation of Electron in a Periodic Potential 171

Restatement of the Bloch Theorem 175

Crystal Momentum of an Electron 175

Solution of the Central Equation 176

Kronig-Penney Model in Reciprocal Space 176

Empty Lattice Approximation 178

Approximate Solution Near a Zone Boundary 179

Number of Orbitals in a Band 182

Metals and Insulators 183

Summary 184

Problems 184

Chapter 8: Semiconductor Crystals 187

Band Gap 189

Equations of Motion 193

Physical Derivation of 195

Holes 196

Effective Mass 199

Physical Interpretation of the Effective Mass 200

Effective Masses in Semiconductors 202

Silicon and Germanium 204

Intrinsic Carrier Concentration 207

Intrinsic Mobility 210

Impurity Conductivity 211

Donor States 211

Acceptor States 213

Thermal Ionization of Donors and Acceptors 215

Thermoelectric Effects 216

Semimetals 217

Superlattices 218

Bloch Oscillator 219

Zener Tunneling 219

Summary 219

Problems 220

Chapter 9: Fermi Surfaces And Metals 223

Reduced Zone Scheme 225

Periodic Zone Scheme 227

Construction of Fermi Surfaces 228

Nearly Free Electrons 230

Electron Orbits, Hole Orbits, and Open Orbits 232

Calculation of Energy Bands 234

Tight Binding Method for Energy Bands 234

Wigner-Seitz Method 238

Cohesive Energy 239

Pseudopotential Methods 241

Experimental Methods in Fermi Surface Studies 244

Quantization of Orbits in a Magnetic Field 244

De Haas-van Alphen Effect 246

Extremal Orbits 250

Fermi Surface of Copper 251

Magnetic Breakdown 253

Summary 254

Problems 254

Chapter 10: Superconductivity 259

Experimental Survey 261

Occurrence of Superconductivity 262

Destruction of Superconductivity by Magnetic Fields 264

Meissner Effect 264

Heat Capacity 266

Energy Gap 268

Microwave and Infrared Properties 270

Isotope Effect 271

Theoretical Survey 272

Thermodynamics of the Superconducting Transition 272

London Equation 275

Coherence Length 278

BCS Theory of Superconductivity 279

BCS Ground State 280

Flux Quantization in a Superconducting Ring 281

Duration of Persistent Currents 284

Type II Superconductors 285

Vortex State 286

Estimation of Hc1 and Hc2 286

Single Particle Tunneling 289

Josephson Superconductor Tunneling 291

Dc Josephson Effect 291

Ac Josephson Effect 292

Macroscopic Quantum Interference 294

High-Temperature Superconductors 295

Summary 296

Problems 296

Reference 298

Chapter 11: Diamagnetism And Paramagnetism 299

Langevin Diamagnetism Equation 301

Quantum Theory of Diamagnetism of Mononuclear Systems 303

Paramagnetism 304

Quantum Theory of Paramagnetism 304

Rare Earth Ions 307

Hund Rules 308

Iron Group Ions 309

Crystal Field Splitting 309

Quenching of the Orbital Angular Momentum 310

Spectroscopic Splitting Factor 313

Van Vleck Temperature-Independent Paramagnetism 313

Cooling by Isentropic Demagnetization 314

Nuclear Demagnetization 316

Paramagnetic Susceptibility of Conduction Electrons 317

Summary 319

Problems 320

Chapter 12: Ferromagnetism And Antiferromagnetism 323

Ferromagnetic Order 325

Curie Point and the Exchange Integral 325

Temperature Dependence of the Saturation

Magnetization 328

Saturation Magnetization at Absolute Zero 330

Magnons 332

Quantization of Spin Waves 335

Thermal Excitation of Magnons 336

Neutron Magnetic Scattering 337

Ferrimagnetic Order 338

Curie Temperature and Susceptibility of Ferrimagnets 340

Iron Garnets 341

Antiferromagnetic Order 342

Susceptibility Below the Néel Temperature 345

Antiferromagnetic Magnons 346

Ferromagnetic Domains 348

Anisotropy Energy 350

Transition Region Between Domains 351

Origin of Domains 353

Coercivity and Hysteresis 354

Single-Domain Particles 356

Geomagnetism and Biomagnetism 357

Magnetic Force Microscopy 357

Summary 359

Problems 359

Chapter 13: Magnetic Resonance 363

Nuclear Magnetic Resonance 365

Equations of Motion 368

Line Width 372

Motional Narrowing 373

Hyperfine Splitting 375

Examples: Paramagnetic Point Defects 377

F Centers in Alkali Halides 378

Donor Atoms in Silicon 378

Knight Shift 379

Nuclear Quadrupole Resonance 381

Ferromagnetic Resonance 381

Shape Effects in FMR 382

Spin Wave Resonance 384

Antiferromagnetic Resonance 385

Electron Paramagnetic Resonance 388

Exchange Narrowing 388

Zero-field Splitting 388

Principle of Maser Action 388

Three-Level Maser 390

Lasers 391

Summary 392

Problems 393

Chapter 14: Dielectrics And Ferroelectrics 395

Maxwell Equations 397

Polarization 397

Macroscopic Electric Field 398

Depolarization Field, E1 400

Local Electric Field at an Atom 402

Lorentz Field, E2 404

Field of Dipoles Inside Cavity, E3 404

Dielectric Constant and Polarizability 405

Electronic Polarizability 406

Classical Theory of Electronic...

Details
Erscheinungsjahr: 2018
Fachbereich: Atomphysik & Kernphysik
Genre: Physik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: 720 S.
ISBN-13: 9781119454168
ISBN-10: 1119454166
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Kittel, Charles
Hersteller: John Wiley & Sons Inc
Maße: 233 x 187 x 25 mm
Von/Mit: Charles Kittel
Erscheinungsdatum: 09.07.2018
Gewicht: 1,029 kg
Artikel-ID: 114720020
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte