Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
Inhaltsverzeichnis
Preface; Part I. Basic Concepts: 1. Pattern analysis; 2. Kernel methods: an overview; 3. Properties of kernels; 4. Detecting stable patterns; Part II. Pattern Analysis Algorithms: 5. Elementary algorithms in feature space; 6. Pattern analysis using eigen-decompositions; 7. Pattern analysis using convex optimisation; 8. Ranking, clustering and data visualisation; Part III. Constructing Kernels: 9. Basic kernels and kernel types; 10. Kernels for text; 11. Kernels for structured data: strings, trees, etc.; 12. Kernels from generative models; Appendix A: proofs omitted from the main text; Appendix B: notational conventions; Appendix C: list of pattern analysis methods; Appendix D: list of kernels; References; Index.
Details
Erscheinungsjahr: 2014
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9780521813976
ISBN-10: 0521813972
Sprache: Englisch
Einband: Gebunden
Autor: Shawe-Taylor, John
Cristianini, Nello
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 250 x 175 x 30 mm
Von/Mit: John Shawe-Taylor (u. a.)
Erscheinungsdatum: 03.02.2014
Gewicht: 0,997 kg
Artikel-ID: 102373485

Ähnliche Produkte

Taschenbuch

63,80 € UVP 74,89 €

Lieferzeit 2-4 Werktage