Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Introduction to the Galois Correspondence
Taschenbuch von Maureen H. Fenrick
Sprache: Englisch

47,95 €*

-10 % UVP 53,49 €
inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.
In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n > 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.
Inhaltsverzeichnis
I. Preliminaries - Groups and Rings.- 1. Introduction to Groups.- 2. Quotient Groups and Sylow Subgroups.- 3. Finite Abelian Groups and Solvable Groups.- 4. Introduction to Rings.- 5. Factoring in F[x].- II. Field Extensions.- 1. Simple Extensions.- 2. Algebraic Extensions.- 3. Splitting Fields and Normal Extensions.- III. The Galois Correspondence.- 1. The Fundamental Correspondence.- 2. The Solvable Correspondence.- IV. Applications.- 1. Constructibility.- 2. Roots of Unity.- 3. Wedderburn's Theorem.- 3. Dirichlet's Theorem and Finite Abelian Groups.- Appendix A - Groups.- 1. Group Actions and the Sylow Theorems.- 2. Free Groups, Generators and Relations.- Appendix B - Factoring in Integral Domains.- 1. Euclidean Domains and Principal Ideal Domains.- 2. Prime and Irreducible Elements.- 3. Unique Factorization Domains.- Appendix C - Vector Spaces.- 1. Subspaces, Linear Independence and Spanning.- 2. Bases and Dimension.
Details
Erscheinungsjahr: 2012
Fachbereich: Arithmetik & Algebra
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
244 S.
ISBN-13: 9781461272854
ISBN-10: 1461272858
Sprache: Englisch
Herstellernummer: 80104353
Einband: Kartoniert / Broschiert
Autor: Fenrick, Maureen H.
Auflage: Softcover reprint of the original 2nd edition 1998
Hersteller: Birkhäuser Boston
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 235 x 155 x 15 mm
Von/Mit: Maureen H. Fenrick
Erscheinungsdatum: 05.11.2012
Gewicht: 0,4 kg
Artikel-ID: 106027314
Inhaltsverzeichnis
I. Preliminaries - Groups and Rings.- 1. Introduction to Groups.- 2. Quotient Groups and Sylow Subgroups.- 3. Finite Abelian Groups and Solvable Groups.- 4. Introduction to Rings.- 5. Factoring in F[x].- II. Field Extensions.- 1. Simple Extensions.- 2. Algebraic Extensions.- 3. Splitting Fields and Normal Extensions.- III. The Galois Correspondence.- 1. The Fundamental Correspondence.- 2. The Solvable Correspondence.- IV. Applications.- 1. Constructibility.- 2. Roots of Unity.- 3. Wedderburn's Theorem.- 3. Dirichlet's Theorem and Finite Abelian Groups.- Appendix A - Groups.- 1. Group Actions and the Sylow Theorems.- 2. Free Groups, Generators and Relations.- Appendix B - Factoring in Integral Domains.- 1. Euclidean Domains and Principal Ideal Domains.- 2. Prime and Irreducible Elements.- 3. Unique Factorization Domains.- Appendix C - Vector Spaces.- 1. Subspaces, Linear Independence and Spanning.- 2. Bases and Dimension.
Details
Erscheinungsjahr: 2012
Fachbereich: Arithmetik & Algebra
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xi
244 S.
ISBN-13: 9781461272854
ISBN-10: 1461272858
Sprache: Englisch
Herstellernummer: 80104353
Einband: Kartoniert / Broschiert
Autor: Fenrick, Maureen H.
Auflage: Softcover reprint of the original 2nd edition 1998
Hersteller: Birkhäuser Boston
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 235 x 155 x 15 mm
Von/Mit: Maureen H. Fenrick
Erscheinungsdatum: 05.11.2012
Gewicht: 0,4 kg
Artikel-ID: 106027314
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte