59,00 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.
Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.
Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Pieter Abbeel is Assistant Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
David Heckerman is Assistant Professor of Computer Science at the University of Southern California. He received his doctoral degree in Medical Information Sciences from Stanford University.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Stuart Russell is Associate Professor of Computer Science at the University of California, Berkeley. This book builds on important philosophical and technical work by his coauthor, the late Eric Wefald.
Empfohlen (von): | 18 |
---|---|
Erscheinungsjahr: | 2019 |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9780262538688 |
ISBN-10: | 0262538687 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Redaktion: | Taskar, Ben |
Hersteller: | MIT Press |
Maße: | 254 x 203 x 32 mm |
Von/Mit: | Ben Taskar |
Erscheinungsdatum: | 22.09.2019 |
Gewicht: | 1,272 kg |
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.
Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Lise Getoor is Assistant Professor in the Department of Computer Science at the University of Maryland.
Nir Friedman is Professor in the Department of Computer Science and Engineering at Hebrew University.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Ben Taskar is Assistant Professor in the Computer and Information Science Department at the University of Pennsylvania.
Pieter Abbeel is Assistant Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
David Heckerman is Assistant Professor of Computer Science at the University of Southern California. He received his doctoral degree in Medical Information Sciences from Stanford University.
Daphne Koller is Professor in the Department of Computer Science at Stanford University.
Stuart Russell is Associate Professor of Computer Science at the University of California, Berkeley. This book builds on important philosophical and technical work by his coauthor, the late Eric Wefald.
Empfohlen (von): | 18 |
---|---|
Erscheinungsjahr: | 2019 |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9780262538688 |
ISBN-10: | 0262538687 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Redaktion: | Taskar, Ben |
Hersteller: | MIT Press |
Maße: | 254 x 203 x 32 mm |
Von/Mit: | Ben Taskar |
Erscheinungsdatum: | 22.09.2019 |
Gewicht: | 1,272 kg |