Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Introduction to Data Science
A Python Approach to Concepts, Techniques and Applications
Taschenbuch von Laura Igual (u. a.)
Sprache: Englisch

48,14 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis.
Topics and features:
Provides numerous practical case studies using real-world data throughout the book
Supports understanding through hands-on experience of solving data science problems using Python
Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data
Provides supplementary code resources and data at an associated website

This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis.
Topics and features:
Provides numerous practical case studies using real-world data throughout the book
Supports understanding through hands-on experience of solving data science problems using Python
Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data
Provides supplementary code resources and data at an associated website

This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.
Über den Autor

Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Associate Professor at the same institution.

The authors wish to mention that some chapters were co-written by Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera.

Inhaltsverzeichnis

1. Introduction to Data Science.- 2. Toolboxes for Data Scientists.- 3. Descriptive statistics.- 4. Statistical Inference.- 5. Supervised Learning.- 6. Regression Analysis.- 7. Unsupervised Learning.- 8. Network Analysis.- 9. Recommender Systems.- 10. Statistical Natural Language Processing for Sentiment Analysis.- 11. Parallel Computing.

Details
Erscheinungsjahr: 2024
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Undergraduate Topics in Computer Science
Inhalt: xiv
246 S.
4 s/w Illustr.
78 farbige Illustr.
246 p. 82 illus.
78 illus. in color.
ISBN-13: 9783031489556
ISBN-10: 3031489551
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Igual, Laura
Seguí, Santi
Auflage: 2nd ed. 2024
Hersteller: Springer International Publishing
Springer International Publishing AG
Undergraduate Topics in Computer Science
Maße: 235 x 155 x 15 mm
Von/Mit: Laura Igual (u. a.)
Erscheinungsdatum: 13.04.2024
Gewicht: 0,4 kg
Artikel-ID: 128143418
Über den Autor

Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Associate Professor at the same institution.

The authors wish to mention that some chapters were co-written by Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera.

Inhaltsverzeichnis

1. Introduction to Data Science.- 2. Toolboxes for Data Scientists.- 3. Descriptive statistics.- 4. Statistical Inference.- 5. Supervised Learning.- 6. Regression Analysis.- 7. Unsupervised Learning.- 8. Network Analysis.- 9. Recommender Systems.- 10. Statistical Natural Language Processing for Sentiment Analysis.- 11. Parallel Computing.

Details
Erscheinungsjahr: 2024
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Undergraduate Topics in Computer Science
Inhalt: xiv
246 S.
4 s/w Illustr.
78 farbige Illustr.
246 p. 82 illus.
78 illus. in color.
ISBN-13: 9783031489556
ISBN-10: 3031489551
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Igual, Laura
Seguí, Santi
Auflage: 2nd ed. 2024
Hersteller: Springer International Publishing
Springer International Publishing AG
Undergraduate Topics in Computer Science
Maße: 235 x 155 x 15 mm
Von/Mit: Laura Igual (u. a.)
Erscheinungsdatum: 13.04.2024
Gewicht: 0,4 kg
Artikel-ID: 128143418
Warnhinweis