Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Internal Combustion Engine Fundamentals
Buch von John Heywood
Sprache: Englisch

192,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
The long-awaited revision of the most respected resource on Internal Combustion Engines --covering the basics through advanced operation of spark-ignition and diesel engines.
Written by one of the most recognized and highly regarded names in internal combustion engines this trusted educational resource and professional reference covers the key physical and chemical processes that govern internal combustion engine operation and design. Internal Combustion Engine Fundamentals, Second Edition, has been thoroughly revised to cover recent advances, including performance enhancement, efficiency improvements, and emission reduction technologies. Highly illustrated and cross referenced, the book includes discussions of these engines' environmental impacts and requirements. You will get complete explanations of spark-ignition and compression-ignition (diesel) engine operating characteristics as well as of engine flow and combustion phenomena and fuel requirements.
Coverage includes:
.Engine types and their operation
.Engine design and operating parameters
.Thermochemistry of fuel-air mixtures
.Properties of working fluids
.Ideal models of engine cycles
.Gas exchange processes
.Mixture preparation in spark-ignition engines
.Charge motion within the cylinder
.Combustion in spark-ignition engines
.Combustion in compression-ignition engines
.Pollutant formation and control
.Engine heat transfer
.Engine friction and lubrication
.Modeling real engine flow and combustion processes
.Engine operating characteristics
The long-awaited revision of the most respected resource on Internal Combustion Engines --covering the basics through advanced operation of spark-ignition and diesel engines.
Written by one of the most recognized and highly regarded names in internal combustion engines this trusted educational resource and professional reference covers the key physical and chemical processes that govern internal combustion engine operation and design. Internal Combustion Engine Fundamentals, Second Edition, has been thoroughly revised to cover recent advances, including performance enhancement, efficiency improvements, and emission reduction technologies. Highly illustrated and cross referenced, the book includes discussions of these engines' environmental impacts and requirements. You will get complete explanations of spark-ignition and compression-ignition (diesel) engine operating characteristics as well as of engine flow and combustion phenomena and fuel requirements.
Coverage includes:
.Engine types and their operation
.Engine design and operating parameters
.Thermochemistry of fuel-air mixtures
.Properties of working fluids
.Ideal models of engine cycles
.Gas exchange processes
.Mixture preparation in spark-ignition engines
.Charge motion within the cylinder
.Combustion in spark-ignition engines
.Combustion in compression-ignition engines
.Pollutant formation and control
.Engine heat transfer
.Engine friction and lubrication
.Modeling real engine flow and combustion processes
.Engine operating characteristics
Über den Autor
John B. Heywood has been a faculty member at the Massachusetts Institute of Technology since1968, where he was Sun Jae Professor of Mechanical Engineering and Director of the Sloan Automotive Laboratory. He has published over 230 technical papers and is the author of five books, including the first edition of Internal Combustion Engine Fundamentals.
Inhaltsverzeichnis
Commonly Used Symbols, Subscripts, and Abbreviations
CHAPTER 1 Engine Types and Their Operation
1.1 Introduction and Historical Perspective
1.2 Engine Classifications
1.3 Engine Operating Cycles
1.4 Engine Components
1.5 Multicylinder Engines
1.6 Spark-Ignition Engine Operation
1.7 Different Types of Four-Stroke SI Engines
1.7.1 Spark-Ignition Engines with Port Fuel Injection
1.7.2 SI Engines for Hybrid Electric Vehicles
1.7.3 Boosted SI Engines
1.7.4 Direct-Injection SI Engines
1.7.5 Prechamber SI Engines
1.7.6 Rotary Engines
1.8 Compression-Ignition Engine Operation
1.9 Different Types of Diesel Engines
1.10 Two-Stroke Cycle Engine Operation
1.11 Fuels
1.11.1 Gasoline and Diesel
1.11.2 Alternative Fuels
Problems
References
CHAPTER 2 Engine Design and Operating Parameters
2.1 Important Engine Characteristics
2.2 Geometrical Relationships for Reciprocating Engines
2.3 Forces in Reciprocating Mechanism
2.4 Brake Torque and Power
2.5 Indicated Work per Cycle
2.6 Mechanical Efficiency
2.7 Mean Effective Pressure
2.8 Specific Fuel Consumption and Efficiency
2.9 Air/Fuel and Fuel/Air Ratios
2.10 Volumetric Efficiency
2.11 Specific Power, Specific Weight, and Specific Volume
2.12 Correction Factors for Power and Volumetric Efficiency
2.13 Specific Emissions and Emissions Index
2.14 Relationships between Performance Parameters
2.15 Engine Design and Performance Data
2.16 Vehicle Power Requirements
Problems
References
CHAPTER 3 Thermochemistry of Fuel-Air Mixtures
3.1 Characterization of Flames
3.2 Ideal Gas Model
3.3 Composition of Air and Fuels
3.4 Combustion Stoichiometry
3.5 The First Law of Thermodynamics and Combustion
3.5.1 Energy and Enthalpy Balances
3.5.2 Enthalpies of Formation
3.5.3 Heating Values
3.5.4 Adiabatic Combustion Processes
3.5.5 Combustion Efficiency of an Internal Combustion Engine
3.6 The Second Law of Thermodynamics Applied to Combustion
3.6.1 Entropy
3.6.2 Maximum Work from an Internal Combustion Engine and Efficiency
3.7 Chemically Reacting Gas Mixtures
3.7.1 Chemical Equilibrium
3.7.2 Chemical Reaction Rates
Problems
References
CHAPTER 4 Properties of Working Fluids
4.1 Introduction
4.2 Unburned Mixture Composition
4.3 Gas Property Relationships
4.4 A Simple Analytic Ideal Gas Model
4.5 Thermodynamic Property Charts
4.5.1 Unburned Mixture Charts
4.5.2 Burned Mixture Charts
4.5.3 Relation between Unburned and Burned Mixture Charts
4.6 Tables of Properties and Composition
4.7 Computer Routines for Property and Composition Calculations
4.7.1 Unburned Mixtures
4.7.2 Burned Mixtures
4.8 Transport Properties
4.9 Exhaust Gas Composition
4.9.1 Species Concentration Data
4.9.2 Equivalence Ratio Determination from Exhaust Gas Constituents
4.9.3 Effects of Fuel/Air Ratio Nonuniformity
4.9.4 Combustion Inefficiency
Problems
References
CHAPTER 5 Ideal Models of Engine Cycles
5.1 Introduction
5.2 Ideal Models of Engine Processes
5.3 Thermodynamic Relations for Engine Processes
5.4 Cycle Analysis with Ideal Gas Working Fluid with cv and cp Constant
5.4.1 Constant-Volume Cycle
5.4.2 Limited- and Constant-Pressure Cycles
5.4.3 Cycle Comparison
5.5 Fuel-Air Cycle Analysis
5.5.1 SI Engine Cycle Simulation
5.5.2 CI Engine Cycle Simulation
5.5.3 Results of Cycle Calculations
5.6 Overexpanded Engine Cycles
5.7 Availability Analysis of Engine Processes
5.7.1 Availability Relationships
5.7.2 Entropy Changes in Ideal Cycles
5.7.3 Availability Analysis of Ideal Cycles
5.7.4 Effect of Equivalence Ratio
5.8 Comparison with Real Engine Cycles
Problems
References
CHAPTER 6 Gas Exchange Processes
6.1 Intake and Exhaust Processes in the Four-Stroke Cycle
6.2 Volumetric Efficiency
6.2.1 Quasi-Static Effects
6.2.2 Intake and Exhaust Flow Resistances
6.2.3 Intake and In-Cylinder Heat Transfer
6.2.4 Intake Valve Timing Effects
6.2.5 Airflow Choking at Intake Valve
6.2.6 Intake and Exhaust Tuning
6.2.7 Combined Effects: Naturally-Aspirated Engines
6.2.8 Effects of Turbocharging
6.3 Flow through Valves and Ports
6.3.1 Valve and Port Geometry and Operation
6.3.2 Flow Rates and Discharge Coefficients
6.3.3 Variable Valve Timing and Control
6.4 Residual Gas Fraction
6.5 Exhaust Gas Flow Rate and Temperature Variation
6.6 Scavenging in Two-Stroke Cycle Engines
6.6.1 Two-Stroke Engine Configurations
6.6.2 Scavenging Parameters and Models
6.6.3 Actual Scavenging Processes
6.7 Flow through Two-Stroke Engine Ports
6.8 Supercharging and Turbocharging
6.8.1 Methods of Power Boosting
6.8.2 Basic Relationships
6.8.3 Compressors
6.8.4 Turbines
6.8.5 Compressor, Engine, Turbine Matching
6.8.6 Wave-Compression Devices
Problems
References
CHAPTER 7 Mixture Preparation in SI Engines
7.1 Spark-Ignition Engine Mixture Requirements
7.2 Fuel Metering Overview
7.2.1 Mixture Formation Approaches
7.2.2 Relevant Characteristics of Fuels
7.3 Central (Throttle-Body) Fuel Injection
7.4 Port (Multipoint) Fuel Injection
7.4.1 System Layout, Components, and Function
7.4.2 Fuel Spray Behavior
7.4.3 Reverse Flow Impacts
7.5 Air Flow Phenomena
7.5.1 Flow Past the Throttle Plate
7.5.2 Flow in Intake Manifolds
7.5.3 Air Flow Models
7.6 Fuel Flow Phenomena: Port Fuel Injection
7.6.1 Liquid Fuel Behavior
7.6.2 Transients: Fuel-Film Models
7.7 Direct Fuel Injection
7.7.1 Overview of Direct-Injection Approaches
7.7.2 DI Mixture Preparation Processes
7.7.3 DI Engine System and Components
7.8 Exhaust Gas Oxygen Sensors
7.9 Fuel Supply Systems
7.10 Liquid Petroleum Gas and Natural Gas
Problems
References
CHAPTER 8 Charge Motion within the Cylinder
8.1 Intake-Generated Flows
8.2 Mean Velocity and Turbulence Characteristics
8.2.1 Definitions of Relevant Parameters
8.2.2 Application to Engine Velocity Data
8.3 Swirl
8.3.1 Swirl Measurement
8.3.2 Swirl Generation during Induction
8.3.3 Swirl Modification within the Cylinder
8.4 Tumble
8.5 Piston-Generated Flows: Squish
8.6 Swirl, Tumble, Squish Flow Interactions
8.7 Prechamber Engine Flows
8.8 Crevice Flows and Blowby
8.9 Flows Generated by Piston Cylinder-Wall Interaction
Problems
References
CHAPTER 9 Combustion in Spark-Ignition Engines
9.1 Essential Features of Process
9.1.1 Combustion Fundamentals
9.1.2 SI Engine Combustion Process
9.2 Thermodynamics of SI Engine Combustion
9.2.1 Burned and Unburned Mixture States
9.2.2 Analysis of Cylinder Pressure Data
9.2.3 Combustion Process Characterization
9.3 Flame Structure and Speed
9.3.1 Overall Observations
9.3.2 Flame Structure
9.3.3 Laminar Burning Speeds
9.3.4 Flame Propagation Relations
9.3.5 Combustion with Direct Fuel Injection
9.4 Cyclic Variations in Combustion, Partial Burning, and Misfire
9.4.1 Observations and Definitions
9.4.2 Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations
9.4.3 Partial Burning, Misfire, and Engine Stability
9.5 Spark Ignition
9.5.1 Ignition Fundamentals
9.5.2 Standard Ignition Systems
9.5.3 Alternative Ignition Approaches
9.6 Abnormal Combustion: Spontaneous Ignition and Knock
9.6.1 Description of Phenomena
9.6.2 Knock Fundamentals
9.6.3 Fuel Factors
9.6.4 Sporadic Preignition and Knock
9.6.5 Knock Suppression
Problems
References
CHAPTER 10 Combustion in Compression-Ignition Engines
10.1 Essential Features of Process
10.2 Types of Diesel Combustion Systems
10.2.1 Direct-Injection Systems
10.2.2 Other Diesel Combustion Systems
10.2.3 Comparison of Different Combustion Systems
10.3 Diesel Engine Combustion
10.3.1 Optical Studies of Diesel Combustion
10.3.2 Combustion in Direct-Injection Multi-Spray Systems
10.3.3 Heat-Release-Rate Analysis
10.3.4 Conceptual Model of DI Diesel Combustion
10.4 Fuel Spray Behavior
10.4.1 Fuel Injection
10.4.2 Overall Spray Structure
10.4.3 Atomization and Spray Development
10.4.4 Spray Penetration
10.4.5 Droplet Size Distribution
10.4.6 Spray Evaporation
10.5 Ignition Delay
10.5.1 Definition and Discussion
10.5.2 Fuel Ignition Quality
10.5.3 Autoignition and Premixed Burn
10.5.4 Physical Factors Affecting Ignition Delay
10.5.5 Effect of Fuel Properties
10.5.6 Correlations for Ignition Delay in Engines
10.6 Mixing-Controlled Combustion
10.6.1 Background
10.6.2 Spray and Flame Structure
10.6.3 Fuel-Air Mixing and Burning Rates
10.7 Alternative Compression-Ignition Combustion Approaches
10.7.1 Multiple-Injection Diesel Combustion
10.7.2 Advanced Compression-Ignition Combustion Concepts
Problems
References
CHAPTER 11 Pollutant Formation and Control
11.1 Nature and Extent of Problem
11.2 Nitrogen Oxides
11.2.1 Kinetics of NO Formation
11.2.2 Formation of NO2
11.2.3 NO Formation in Spark-Ignition Engines
11.2.4 NOx Formation in Compression-Ignition Engine
s
11.3 Carbon Monoxide
11.4 Hydrocarbon Emissions
11.4.1 Background
11.4.2 Flame Quenching and Oxidation Fundamentals
11.4.3 HC Emissions from Spark-Ignition Engines
11.4.4 Hydrocarbon Emission Mechanisms in...
Details
Erscheinungsjahr: 2018
Fachbereich: Kraftwerktechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9781260116106
ISBN-10: 1260116107
Sprache: Englisch
Einband: Gebunden
Autor: Heywood, John
Auflage: 2. Auflage
Hersteller: McGraw-Hill Education Ltd
McGraw-Hill Education
Maße: 259 x 208 x 62 mm
Von/Mit: John Heywood
Erscheinungsdatum: 10.05.2018
Gewicht: 2,458 kg
Artikel-ID: 109532399
Über den Autor
John B. Heywood has been a faculty member at the Massachusetts Institute of Technology since1968, where he was Sun Jae Professor of Mechanical Engineering and Director of the Sloan Automotive Laboratory. He has published over 230 technical papers and is the author of five books, including the first edition of Internal Combustion Engine Fundamentals.
Inhaltsverzeichnis
Commonly Used Symbols, Subscripts, and Abbreviations
CHAPTER 1 Engine Types and Their Operation
1.1 Introduction and Historical Perspective
1.2 Engine Classifications
1.3 Engine Operating Cycles
1.4 Engine Components
1.5 Multicylinder Engines
1.6 Spark-Ignition Engine Operation
1.7 Different Types of Four-Stroke SI Engines
1.7.1 Spark-Ignition Engines with Port Fuel Injection
1.7.2 SI Engines for Hybrid Electric Vehicles
1.7.3 Boosted SI Engines
1.7.4 Direct-Injection SI Engines
1.7.5 Prechamber SI Engines
1.7.6 Rotary Engines
1.8 Compression-Ignition Engine Operation
1.9 Different Types of Diesel Engines
1.10 Two-Stroke Cycle Engine Operation
1.11 Fuels
1.11.1 Gasoline and Diesel
1.11.2 Alternative Fuels
Problems
References
CHAPTER 2 Engine Design and Operating Parameters
2.1 Important Engine Characteristics
2.2 Geometrical Relationships for Reciprocating Engines
2.3 Forces in Reciprocating Mechanism
2.4 Brake Torque and Power
2.5 Indicated Work per Cycle
2.6 Mechanical Efficiency
2.7 Mean Effective Pressure
2.8 Specific Fuel Consumption and Efficiency
2.9 Air/Fuel and Fuel/Air Ratios
2.10 Volumetric Efficiency
2.11 Specific Power, Specific Weight, and Specific Volume
2.12 Correction Factors for Power and Volumetric Efficiency
2.13 Specific Emissions and Emissions Index
2.14 Relationships between Performance Parameters
2.15 Engine Design and Performance Data
2.16 Vehicle Power Requirements
Problems
References
CHAPTER 3 Thermochemistry of Fuel-Air Mixtures
3.1 Characterization of Flames
3.2 Ideal Gas Model
3.3 Composition of Air and Fuels
3.4 Combustion Stoichiometry
3.5 The First Law of Thermodynamics and Combustion
3.5.1 Energy and Enthalpy Balances
3.5.2 Enthalpies of Formation
3.5.3 Heating Values
3.5.4 Adiabatic Combustion Processes
3.5.5 Combustion Efficiency of an Internal Combustion Engine
3.6 The Second Law of Thermodynamics Applied to Combustion
3.6.1 Entropy
3.6.2 Maximum Work from an Internal Combustion Engine and Efficiency
3.7 Chemically Reacting Gas Mixtures
3.7.1 Chemical Equilibrium
3.7.2 Chemical Reaction Rates
Problems
References
CHAPTER 4 Properties of Working Fluids
4.1 Introduction
4.2 Unburned Mixture Composition
4.3 Gas Property Relationships
4.4 A Simple Analytic Ideal Gas Model
4.5 Thermodynamic Property Charts
4.5.1 Unburned Mixture Charts
4.5.2 Burned Mixture Charts
4.5.3 Relation between Unburned and Burned Mixture Charts
4.6 Tables of Properties and Composition
4.7 Computer Routines for Property and Composition Calculations
4.7.1 Unburned Mixtures
4.7.2 Burned Mixtures
4.8 Transport Properties
4.9 Exhaust Gas Composition
4.9.1 Species Concentration Data
4.9.2 Equivalence Ratio Determination from Exhaust Gas Constituents
4.9.3 Effects of Fuel/Air Ratio Nonuniformity
4.9.4 Combustion Inefficiency
Problems
References
CHAPTER 5 Ideal Models of Engine Cycles
5.1 Introduction
5.2 Ideal Models of Engine Processes
5.3 Thermodynamic Relations for Engine Processes
5.4 Cycle Analysis with Ideal Gas Working Fluid with cv and cp Constant
5.4.1 Constant-Volume Cycle
5.4.2 Limited- and Constant-Pressure Cycles
5.4.3 Cycle Comparison
5.5 Fuel-Air Cycle Analysis
5.5.1 SI Engine Cycle Simulation
5.5.2 CI Engine Cycle Simulation
5.5.3 Results of Cycle Calculations
5.6 Overexpanded Engine Cycles
5.7 Availability Analysis of Engine Processes
5.7.1 Availability Relationships
5.7.2 Entropy Changes in Ideal Cycles
5.7.3 Availability Analysis of Ideal Cycles
5.7.4 Effect of Equivalence Ratio
5.8 Comparison with Real Engine Cycles
Problems
References
CHAPTER 6 Gas Exchange Processes
6.1 Intake and Exhaust Processes in the Four-Stroke Cycle
6.2 Volumetric Efficiency
6.2.1 Quasi-Static Effects
6.2.2 Intake and Exhaust Flow Resistances
6.2.3 Intake and In-Cylinder Heat Transfer
6.2.4 Intake Valve Timing Effects
6.2.5 Airflow Choking at Intake Valve
6.2.6 Intake and Exhaust Tuning
6.2.7 Combined Effects: Naturally-Aspirated Engines
6.2.8 Effects of Turbocharging
6.3 Flow through Valves and Ports
6.3.1 Valve and Port Geometry and Operation
6.3.2 Flow Rates and Discharge Coefficients
6.3.3 Variable Valve Timing and Control
6.4 Residual Gas Fraction
6.5 Exhaust Gas Flow Rate and Temperature Variation
6.6 Scavenging in Two-Stroke Cycle Engines
6.6.1 Two-Stroke Engine Configurations
6.6.2 Scavenging Parameters and Models
6.6.3 Actual Scavenging Processes
6.7 Flow through Two-Stroke Engine Ports
6.8 Supercharging and Turbocharging
6.8.1 Methods of Power Boosting
6.8.2 Basic Relationships
6.8.3 Compressors
6.8.4 Turbines
6.8.5 Compressor, Engine, Turbine Matching
6.8.6 Wave-Compression Devices
Problems
References
CHAPTER 7 Mixture Preparation in SI Engines
7.1 Spark-Ignition Engine Mixture Requirements
7.2 Fuel Metering Overview
7.2.1 Mixture Formation Approaches
7.2.2 Relevant Characteristics of Fuels
7.3 Central (Throttle-Body) Fuel Injection
7.4 Port (Multipoint) Fuel Injection
7.4.1 System Layout, Components, and Function
7.4.2 Fuel Spray Behavior
7.4.3 Reverse Flow Impacts
7.5 Air Flow Phenomena
7.5.1 Flow Past the Throttle Plate
7.5.2 Flow in Intake Manifolds
7.5.3 Air Flow Models
7.6 Fuel Flow Phenomena: Port Fuel Injection
7.6.1 Liquid Fuel Behavior
7.6.2 Transients: Fuel-Film Models
7.7 Direct Fuel Injection
7.7.1 Overview of Direct-Injection Approaches
7.7.2 DI Mixture Preparation Processes
7.7.3 DI Engine System and Components
7.8 Exhaust Gas Oxygen Sensors
7.9 Fuel Supply Systems
7.10 Liquid Petroleum Gas and Natural Gas
Problems
References
CHAPTER 8 Charge Motion within the Cylinder
8.1 Intake-Generated Flows
8.2 Mean Velocity and Turbulence Characteristics
8.2.1 Definitions of Relevant Parameters
8.2.2 Application to Engine Velocity Data
8.3 Swirl
8.3.1 Swirl Measurement
8.3.2 Swirl Generation during Induction
8.3.3 Swirl Modification within the Cylinder
8.4 Tumble
8.5 Piston-Generated Flows: Squish
8.6 Swirl, Tumble, Squish Flow Interactions
8.7 Prechamber Engine Flows
8.8 Crevice Flows and Blowby
8.9 Flows Generated by Piston Cylinder-Wall Interaction
Problems
References
CHAPTER 9 Combustion in Spark-Ignition Engines
9.1 Essential Features of Process
9.1.1 Combustion Fundamentals
9.1.2 SI Engine Combustion Process
9.2 Thermodynamics of SI Engine Combustion
9.2.1 Burned and Unburned Mixture States
9.2.2 Analysis of Cylinder Pressure Data
9.2.3 Combustion Process Characterization
9.3 Flame Structure and Speed
9.3.1 Overall Observations
9.3.2 Flame Structure
9.3.3 Laminar Burning Speeds
9.3.4 Flame Propagation Relations
9.3.5 Combustion with Direct Fuel Injection
9.4 Cyclic Variations in Combustion, Partial Burning, and Misfire
9.4.1 Observations and Definitions
9.4.2 Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations
9.4.3 Partial Burning, Misfire, and Engine Stability
9.5 Spark Ignition
9.5.1 Ignition Fundamentals
9.5.2 Standard Ignition Systems
9.5.3 Alternative Ignition Approaches
9.6 Abnormal Combustion: Spontaneous Ignition and Knock
9.6.1 Description of Phenomena
9.6.2 Knock Fundamentals
9.6.3 Fuel Factors
9.6.4 Sporadic Preignition and Knock
9.6.5 Knock Suppression
Problems
References
CHAPTER 10 Combustion in Compression-Ignition Engines
10.1 Essential Features of Process
10.2 Types of Diesel Combustion Systems
10.2.1 Direct-Injection Systems
10.2.2 Other Diesel Combustion Systems
10.2.3 Comparison of Different Combustion Systems
10.3 Diesel Engine Combustion
10.3.1 Optical Studies of Diesel Combustion
10.3.2 Combustion in Direct-Injection Multi-Spray Systems
10.3.3 Heat-Release-Rate Analysis
10.3.4 Conceptual Model of DI Diesel Combustion
10.4 Fuel Spray Behavior
10.4.1 Fuel Injection
10.4.2 Overall Spray Structure
10.4.3 Atomization and Spray Development
10.4.4 Spray Penetration
10.4.5 Droplet Size Distribution
10.4.6 Spray Evaporation
10.5 Ignition Delay
10.5.1 Definition and Discussion
10.5.2 Fuel Ignition Quality
10.5.3 Autoignition and Premixed Burn
10.5.4 Physical Factors Affecting Ignition Delay
10.5.5 Effect of Fuel Properties
10.5.6 Correlations for Ignition Delay in Engines
10.6 Mixing-Controlled Combustion
10.6.1 Background
10.6.2 Spray and Flame Structure
10.6.3 Fuel-Air Mixing and Burning Rates
10.7 Alternative Compression-Ignition Combustion Approaches
10.7.1 Multiple-Injection Diesel Combustion
10.7.2 Advanced Compression-Ignition Combustion Concepts
Problems
References
CHAPTER 11 Pollutant Formation and Control
11.1 Nature and Extent of Problem
11.2 Nitrogen Oxides
11.2.1 Kinetics of NO Formation
11.2.2 Formation of NO2
11.2.3 NO Formation in Spark-Ignition Engines
11.2.4 NOx Formation in Compression-Ignition Engine
s
11.3 Carbon Monoxide
11.4 Hydrocarbon Emissions
11.4.1 Background
11.4.2 Flame Quenching and Oxidation Fundamentals
11.4.3 HC Emissions from Spark-Ignition Engines
11.4.4 Hydrocarbon Emission Mechanisms in...
Details
Erscheinungsjahr: 2018
Fachbereich: Kraftwerktechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: Gebunden
ISBN-13: 9781260116106
ISBN-10: 1260116107
Sprache: Englisch
Einband: Gebunden
Autor: Heywood, John
Auflage: 2. Auflage
Hersteller: McGraw-Hill Education Ltd
McGraw-Hill Education
Maße: 259 x 208 x 62 mm
Von/Mit: John Heywood
Erscheinungsdatum: 10.05.2018
Gewicht: 2,458 kg
Artikel-ID: 109532399
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte