Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
How To Build A Brain
A Neural Architecture for Biological Cognition
Taschenbuch von Chris Eliasmith
Sprache: Englisch

88,65 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
How to Build a Brain provides a guided exploration of a new cognitive architecture that takes biological detail seriously while addressing cognitive phenomena. The Semantic Pointer Architecture (SPA) introduced in this book provides a set of tools for constructing a wide range of biologically constrained perceptual, cognitive, and motor models.
How to Build a Brain provides a guided exploration of a new cognitive architecture that takes biological detail seriously while addressing cognitive phenomena. The Semantic Pointer Architecture (SPA) introduced in this book provides a set of tools for constructing a wide range of biologically constrained perceptual, cognitive, and motor models.
Über den Autor
Chris Eliasmith is Canada Research Chair in Theoretical Neuroscience at the University of Waterloo.
Inhaltsverzeichnis
  • 1 The science of cognition

  • 1.1 The last 50 years

  • 1.2 How we got here

  • 1.3 Where we are

  • 1.4 Questions and answers

  • 1.5 Nengo: An introduction

  • Part I. How to build a brain

  • 2 An introduction to brain building

  • 2.1 Brain parts

  • 2.2 A framework for building a brain

  • 2.2.1 Representation

  • 2.2.2 Transformation

  • 2.2.3 Dynamics

  • 2.2.4 The three principles

  • 2.3 Levels

  • 2.4 Nengo: Neural representation

  • 3 Biological cognition - Semantics

  • 3.1 The semantic pointer hypothesis

  • 3.2 What is a semantic pointer?

  • 3.3 Semantics: An overview

  • 3.4 Shallow semantics

  • 3.5 Deep semantics for perception

  • 3.6 Deep semantics for action

  • 3.7 The semantics of perception and action

  • 3.8 Nengo: Neural computations

  • 4 Biological cognition - Syntax

  • 4.1 Structured representations

  • 4.2 Binding without neurons

  • 4.3 Binding with neurons

  • 4.4 Manipulating structured representations

  • 4.5 Learning structural manipulations

  • 4.6 Clean-up memory and scaling

  • 4.7 Example: Fluid intelligence

  • 4.8 Deep semantics for cognition

  • 4.9 Nengo: Structured representations in neurons

  • 5 Biological cognition - Control

  • 5.1 The flow of information

  • 5.2 The basal ganglia

  • 5.3 Basal ganglia, cortex, and thalamus

  • 5.4 Example: Fixed sequences of actions

  • 5.5 Attention and the routing of information

  • 5.6 Example: Flexible sequences of actions

  • 5.7 Timing and control

  • 5.8 Example: The Tower of Hanoi

  • 5.9 Nengo: Question answering

  • 6 Biological cognition - Memory and learning

  • 6.1 Extending cognition through time

  • 6.2 Working memory

  • 6.3 Example: Serial list memory

  • 6.4 Biological learning

  • 6.5 Example: Learning new actions

  • 6.6 Example: Learning new syntactic manipulations

  • 6.7 Nengo: Learning

  • 7 The Semantic Pointer Architecture (SPA)

  • 7.1 A summary of the SPA

  • 7.2 A SPA unified network

  • 7.3 Tasks

  • 7.3.1 Recognition

  • 7.3.2 Copy drawing

  • 7.3.3 Reinforcement learning

  • 7.3.4 Serial working memory

  • 7.3.5 Counting

  • 7.3.6 Question answering

  • 7.3.7 Rapid variable creation

  • 7.3.8 Fluid reasoning

  • 7.3.9 Discussion

  • 7.4 A unified view: Symbols and probabilities

  • 7.5 Nengo: Advanced modeling methods

  • Part II. Is that how you build a brain?

  • 8 Evaluating cognitive theories

  • 8.1 Introduction

  • 8.2 Core Cognitive Criteria (CCC)

  • 8.2.1 Representational structure

  • 8.2.1.1 Systematicity

  • 8.2.1.2 Compositionality

  • 8.2.1.3 Productivity

  • 8.2.1.4 The massive binding problem

  • 8.2.2 Performance concerns

  • 8.2.2.1 Syntactic generalization

  • 8.2.2.2 Robustness

  • 8.2.2.3 Adaptability

  • 8.2.2.4 Memory

  • 8.2.2.5 Scalability

  • 8.2.3 Scientific merit

  • 8.2.3.1 Triangulation

  • 8.2.3.2 Compactness

  • 8.3 Conclusion

  • 8.4 Nengo Bonus: How to build a brain - A practical guide

  • 9 Theories of cognition

  • 9.1 The state of the art

  • 9.1.1 ACT-R

  • 9.1.2 Synchrony-based approaches

  • 9.1.3 Neural Blackboard Architecture (NBA)

  • 9.1.4 The Integrated Connectionist/Symbolic Architecture (ICS)

  • 9.1.5 Leabra

  • 9.1.6 Dynamic Field Theory (DFT)

  • 9.2 An evaluation

  • 9.2.1 Representational structure

  • 9.2.2 Performance concerns

  • 9.2.3 Scientific merit

  • 9.2.4 Summary

  • 9.3 The same...

  • 9.4 ...but different

  • 9.5 The SPA versus the SOA

  • 10 Consequences and challenges

  • 10.1 Representation

  • 10.2 Concepts

  • 10.3 Inference

  • 10.4 Dynamics

  • 10.5 Challenges

  • 10.6 Conclusion

  • A Mathematical notation and overview

  • A.1 Vectors

  • A.2 Vector spaces

  • A.3 The dot product

  • A.4 Basis of a vector space

  • A.5 Linear transformations on vectors

  • A.6 Time derivatives for dynamics

  • B Mathematical derivations for the NEF

  • B.1 Representation

  • B.1.1 Encoding

  • B.1.2 Decoding

  • B.2 Transformation

  • B.3 Dynamics

  • C Further details on deep semantic models

  • C.1 The perceptual model

  • C.2 The motor model

  • D Mathematical derivations for the SPA

  • D.1 Binding and unbinding HRRs

  • D.2 Learning high-level transformations

  • D.3 Ordinal serial encoding model

  • D.4 Spike-timing dependent plasticity

  • D.5 Number of neurons for representing structure

  • E SPA model details

  • E.1 Tower of Hanoi

  • Bibliography

  • Index

Details
Erscheinungsjahr: 2015
Fachbereich: Allgemeines
Genre: Psychologie
Rubrik: Geisteswissenschaften
Thema: Lexika
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9780190262129
ISBN-10: 0190262125
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Eliasmith, Chris
Hersteller: Oxford University Press
Maße: 254 x 178 x 25 mm
Von/Mit: Chris Eliasmith
Erscheinungsdatum: 01.06.2015
Gewicht: 0,887 kg
Artikel-ID: 108610392
Über den Autor
Chris Eliasmith is Canada Research Chair in Theoretical Neuroscience at the University of Waterloo.
Inhaltsverzeichnis
  • 1 The science of cognition

  • 1.1 The last 50 years

  • 1.2 How we got here

  • 1.3 Where we are

  • 1.4 Questions and answers

  • 1.5 Nengo: An introduction

  • Part I. How to build a brain

  • 2 An introduction to brain building

  • 2.1 Brain parts

  • 2.2 A framework for building a brain

  • 2.2.1 Representation

  • 2.2.2 Transformation

  • 2.2.3 Dynamics

  • 2.2.4 The three principles

  • 2.3 Levels

  • 2.4 Nengo: Neural representation

  • 3 Biological cognition - Semantics

  • 3.1 The semantic pointer hypothesis

  • 3.2 What is a semantic pointer?

  • 3.3 Semantics: An overview

  • 3.4 Shallow semantics

  • 3.5 Deep semantics for perception

  • 3.6 Deep semantics for action

  • 3.7 The semantics of perception and action

  • 3.8 Nengo: Neural computations

  • 4 Biological cognition - Syntax

  • 4.1 Structured representations

  • 4.2 Binding without neurons

  • 4.3 Binding with neurons

  • 4.4 Manipulating structured representations

  • 4.5 Learning structural manipulations

  • 4.6 Clean-up memory and scaling

  • 4.7 Example: Fluid intelligence

  • 4.8 Deep semantics for cognition

  • 4.9 Nengo: Structured representations in neurons

  • 5 Biological cognition - Control

  • 5.1 The flow of information

  • 5.2 The basal ganglia

  • 5.3 Basal ganglia, cortex, and thalamus

  • 5.4 Example: Fixed sequences of actions

  • 5.5 Attention and the routing of information

  • 5.6 Example: Flexible sequences of actions

  • 5.7 Timing and control

  • 5.8 Example: The Tower of Hanoi

  • 5.9 Nengo: Question answering

  • 6 Biological cognition - Memory and learning

  • 6.1 Extending cognition through time

  • 6.2 Working memory

  • 6.3 Example: Serial list memory

  • 6.4 Biological learning

  • 6.5 Example: Learning new actions

  • 6.6 Example: Learning new syntactic manipulations

  • 6.7 Nengo: Learning

  • 7 The Semantic Pointer Architecture (SPA)

  • 7.1 A summary of the SPA

  • 7.2 A SPA unified network

  • 7.3 Tasks

  • 7.3.1 Recognition

  • 7.3.2 Copy drawing

  • 7.3.3 Reinforcement learning

  • 7.3.4 Serial working memory

  • 7.3.5 Counting

  • 7.3.6 Question answering

  • 7.3.7 Rapid variable creation

  • 7.3.8 Fluid reasoning

  • 7.3.9 Discussion

  • 7.4 A unified view: Symbols and probabilities

  • 7.5 Nengo: Advanced modeling methods

  • Part II. Is that how you build a brain?

  • 8 Evaluating cognitive theories

  • 8.1 Introduction

  • 8.2 Core Cognitive Criteria (CCC)

  • 8.2.1 Representational structure

  • 8.2.1.1 Systematicity

  • 8.2.1.2 Compositionality

  • 8.2.1.3 Productivity

  • 8.2.1.4 The massive binding problem

  • 8.2.2 Performance concerns

  • 8.2.2.1 Syntactic generalization

  • 8.2.2.2 Robustness

  • 8.2.2.3 Adaptability

  • 8.2.2.4 Memory

  • 8.2.2.5 Scalability

  • 8.2.3 Scientific merit

  • 8.2.3.1 Triangulation

  • 8.2.3.2 Compactness

  • 8.3 Conclusion

  • 8.4 Nengo Bonus: How to build a brain - A practical guide

  • 9 Theories of cognition

  • 9.1 The state of the art

  • 9.1.1 ACT-R

  • 9.1.2 Synchrony-based approaches

  • 9.1.3 Neural Blackboard Architecture (NBA)

  • 9.1.4 The Integrated Connectionist/Symbolic Architecture (ICS)

  • 9.1.5 Leabra

  • 9.1.6 Dynamic Field Theory (DFT)

  • 9.2 An evaluation

  • 9.2.1 Representational structure

  • 9.2.2 Performance concerns

  • 9.2.3 Scientific merit

  • 9.2.4 Summary

  • 9.3 The same...

  • 9.4 ...but different

  • 9.5 The SPA versus the SOA

  • 10 Consequences and challenges

  • 10.1 Representation

  • 10.2 Concepts

  • 10.3 Inference

  • 10.4 Dynamics

  • 10.5 Challenges

  • 10.6 Conclusion

  • A Mathematical notation and overview

  • A.1 Vectors

  • A.2 Vector spaces

  • A.3 The dot product

  • A.4 Basis of a vector space

  • A.5 Linear transformations on vectors

  • A.6 Time derivatives for dynamics

  • B Mathematical derivations for the NEF

  • B.1 Representation

  • B.1.1 Encoding

  • B.1.2 Decoding

  • B.2 Transformation

  • B.3 Dynamics

  • C Further details on deep semantic models

  • C.1 The perceptual model

  • C.2 The motor model

  • D Mathematical derivations for the SPA

  • D.1 Binding and unbinding HRRs

  • D.2 Learning high-level transformations

  • D.3 Ordinal serial encoding model

  • D.4 Spike-timing dependent plasticity

  • D.5 Number of neurons for representing structure

  • E SPA model details

  • E.1 Tower of Hanoi

  • Bibliography

  • Index

Details
Erscheinungsjahr: 2015
Fachbereich: Allgemeines
Genre: Psychologie
Rubrik: Geisteswissenschaften
Thema: Lexika
Medium: Taschenbuch
Inhalt: Kartoniert / Broschiert
ISBN-13: 9780190262129
ISBN-10: 0190262125
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Eliasmith, Chris
Hersteller: Oxford University Press
Maße: 254 x 178 x 25 mm
Von/Mit: Chris Eliasmith
Erscheinungsdatum: 01.06.2015
Gewicht: 0,887 kg
Artikel-ID: 108610392
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte