Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
88,65 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
How to Build a Brain provides a guided exploration of a new cognitive architecture that takes biological detail seriously while addressing cognitive phenomena. The Semantic Pointer Architecture (SPA) introduced in this book provides a set of tools for constructing a wide range of biologically constrained perceptual, cognitive, and motor models.
How to Build a Brain provides a guided exploration of a new cognitive architecture that takes biological detail seriously while addressing cognitive phenomena. The Semantic Pointer Architecture (SPA) introduced in this book provides a set of tools for constructing a wide range of biologically constrained perceptual, cognitive, and motor models.
Über den Autor
Chris Eliasmith is Canada Research Chair in Theoretical Neuroscience at the University of Waterloo.
Inhaltsverzeichnis
- 1 The science of cognition
- 1.1 The last 50 years
- 1.2 How we got here
- 1.3 Where we are
- 1.4 Questions and answers
- 1.5 Nengo: An introduction
- Part I. How to build a brain
- 2 An introduction to brain building
- 2.1 Brain parts
- 2.2 A framework for building a brain
- 2.2.1 Representation
- 2.2.2 Transformation
- 2.2.3 Dynamics
- 2.2.4 The three principles
- 2.3 Levels
- 2.4 Nengo: Neural representation
- 3 Biological cognition - Semantics
- 3.1 The semantic pointer hypothesis
- 3.2 What is a semantic pointer?
- 3.3 Semantics: An overview
- 3.4 Shallow semantics
- 3.5 Deep semantics for perception
- 3.6 Deep semantics for action
- 3.7 The semantics of perception and action
- 3.8 Nengo: Neural computations
- 4 Biological cognition - Syntax
- 4.1 Structured representations
- 4.2 Binding without neurons
- 4.3 Binding with neurons
- 4.4 Manipulating structured representations
- 4.5 Learning structural manipulations
- 4.6 Clean-up memory and scaling
- 4.7 Example: Fluid intelligence
- 4.8 Deep semantics for cognition
- 4.9 Nengo: Structured representations in neurons
- 5 Biological cognition - Control
- 5.1 The flow of information
- 5.2 The basal ganglia
- 5.3 Basal ganglia, cortex, and thalamus
- 5.4 Example: Fixed sequences of actions
- 5.5 Attention and the routing of information
- 5.6 Example: Flexible sequences of actions
- 5.7 Timing and control
- 5.8 Example: The Tower of Hanoi
- 5.9 Nengo: Question answering
- 6 Biological cognition - Memory and learning
- 6.1 Extending cognition through time
- 6.2 Working memory
- 6.3 Example: Serial list memory
- 6.4 Biological learning
- 6.5 Example: Learning new actions
- 6.6 Example: Learning new syntactic manipulations
- 6.7 Nengo: Learning
- 7 The Semantic Pointer Architecture (SPA)
- 7.1 A summary of the SPA
- 7.2 A SPA unified network
- 7.3 Tasks
- 7.3.1 Recognition
- 7.3.2 Copy drawing
- 7.3.3 Reinforcement learning
- 7.3.4 Serial working memory
- 7.3.5 Counting
- 7.3.6 Question answering
- 7.3.7 Rapid variable creation
- 7.3.8 Fluid reasoning
- 7.3.9 Discussion
- 7.4 A unified view: Symbols and probabilities
- 7.5 Nengo: Advanced modeling methods
- Part II. Is that how you build a brain?
- 8 Evaluating cognitive theories
- 8.1 Introduction
- 8.2 Core Cognitive Criteria (CCC)
- 8.2.1 Representational structure
- 8.2.1.1 Systematicity
- 8.2.1.2 Compositionality
- 8.2.1.3 Productivity
- 8.2.1.4 The massive binding problem
- 8.2.2 Performance concerns
- 8.2.2.1 Syntactic generalization
- 8.2.2.2 Robustness
- 8.2.2.3 Adaptability
- 8.2.2.4 Memory
- 8.2.2.5 Scalability
- 8.2.3 Scientific merit
- 8.2.3.1 Triangulation
- 8.2.3.2 Compactness
- 8.3 Conclusion
- 8.4 Nengo Bonus: How to build a brain - A practical guide
- 9 Theories of cognition
- 9.1 The state of the art
- 9.1.1 ACT-R
- 9.1.2 Synchrony-based approaches
- 9.1.3 Neural Blackboard Architecture (NBA)
- 9.1.4 The Integrated Connectionist/Symbolic Architecture (ICS)
- 9.1.5 Leabra
- 9.1.6 Dynamic Field Theory (DFT)
- 9.2 An evaluation
- 9.2.1 Representational structure
- 9.2.2 Performance concerns
- 9.2.3 Scientific merit
- 9.2.4 Summary
- 9.3 The same...
- 9.4 ...but different
- 9.5 The SPA versus the SOA
- 10 Consequences and challenges
- 10.1 Representation
- 10.2 Concepts
- 10.3 Inference
- 10.4 Dynamics
- 10.5 Challenges
- 10.6 Conclusion
- A Mathematical notation and overview
- A.1 Vectors
- A.2 Vector spaces
- A.3 The dot product
- A.4 Basis of a vector space
- A.5 Linear transformations on vectors
- A.6 Time derivatives for dynamics
- B Mathematical derivations for the NEF
- B.1 Representation
- B.1.1 Encoding
- B.1.2 Decoding
- B.2 Transformation
- B.3 Dynamics
- C Further details on deep semantic models
- C.1 The perceptual model
- C.2 The motor model
- D Mathematical derivations for the SPA
- D.1 Binding and unbinding HRRs
- D.2 Learning high-level transformations
- D.3 Ordinal serial encoding model
- D.4 Spike-timing dependent plasticity
- D.5 Number of neurons for representing structure
- E SPA model details
- E.1 Tower of Hanoi
- Bibliography
- Index
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Psychologie |
Rubrik: | Geisteswissenschaften |
Thema: | Lexika |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780190262129 |
ISBN-10: | 0190262125 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Eliasmith, Chris |
Hersteller: | Oxford University Press |
Maße: | 254 x 178 x 25 mm |
Von/Mit: | Chris Eliasmith |
Erscheinungsdatum: | 01.06.2015 |
Gewicht: | 0,887 kg |
Über den Autor
Chris Eliasmith is Canada Research Chair in Theoretical Neuroscience at the University of Waterloo.
Inhaltsverzeichnis
- 1 The science of cognition
- 1.1 The last 50 years
- 1.2 How we got here
- 1.3 Where we are
- 1.4 Questions and answers
- 1.5 Nengo: An introduction
- Part I. How to build a brain
- 2 An introduction to brain building
- 2.1 Brain parts
- 2.2 A framework for building a brain
- 2.2.1 Representation
- 2.2.2 Transformation
- 2.2.3 Dynamics
- 2.2.4 The three principles
- 2.3 Levels
- 2.4 Nengo: Neural representation
- 3 Biological cognition - Semantics
- 3.1 The semantic pointer hypothesis
- 3.2 What is a semantic pointer?
- 3.3 Semantics: An overview
- 3.4 Shallow semantics
- 3.5 Deep semantics for perception
- 3.6 Deep semantics for action
- 3.7 The semantics of perception and action
- 3.8 Nengo: Neural computations
- 4 Biological cognition - Syntax
- 4.1 Structured representations
- 4.2 Binding without neurons
- 4.3 Binding with neurons
- 4.4 Manipulating structured representations
- 4.5 Learning structural manipulations
- 4.6 Clean-up memory and scaling
- 4.7 Example: Fluid intelligence
- 4.8 Deep semantics for cognition
- 4.9 Nengo: Structured representations in neurons
- 5 Biological cognition - Control
- 5.1 The flow of information
- 5.2 The basal ganglia
- 5.3 Basal ganglia, cortex, and thalamus
- 5.4 Example: Fixed sequences of actions
- 5.5 Attention and the routing of information
- 5.6 Example: Flexible sequences of actions
- 5.7 Timing and control
- 5.8 Example: The Tower of Hanoi
- 5.9 Nengo: Question answering
- 6 Biological cognition - Memory and learning
- 6.1 Extending cognition through time
- 6.2 Working memory
- 6.3 Example: Serial list memory
- 6.4 Biological learning
- 6.5 Example: Learning new actions
- 6.6 Example: Learning new syntactic manipulations
- 6.7 Nengo: Learning
- 7 The Semantic Pointer Architecture (SPA)
- 7.1 A summary of the SPA
- 7.2 A SPA unified network
- 7.3 Tasks
- 7.3.1 Recognition
- 7.3.2 Copy drawing
- 7.3.3 Reinforcement learning
- 7.3.4 Serial working memory
- 7.3.5 Counting
- 7.3.6 Question answering
- 7.3.7 Rapid variable creation
- 7.3.8 Fluid reasoning
- 7.3.9 Discussion
- 7.4 A unified view: Symbols and probabilities
- 7.5 Nengo: Advanced modeling methods
- Part II. Is that how you build a brain?
- 8 Evaluating cognitive theories
- 8.1 Introduction
- 8.2 Core Cognitive Criteria (CCC)
- 8.2.1 Representational structure
- 8.2.1.1 Systematicity
- 8.2.1.2 Compositionality
- 8.2.1.3 Productivity
- 8.2.1.4 The massive binding problem
- 8.2.2 Performance concerns
- 8.2.2.1 Syntactic generalization
- 8.2.2.2 Robustness
- 8.2.2.3 Adaptability
- 8.2.2.4 Memory
- 8.2.2.5 Scalability
- 8.2.3 Scientific merit
- 8.2.3.1 Triangulation
- 8.2.3.2 Compactness
- 8.3 Conclusion
- 8.4 Nengo Bonus: How to build a brain - A practical guide
- 9 Theories of cognition
- 9.1 The state of the art
- 9.1.1 ACT-R
- 9.1.2 Synchrony-based approaches
- 9.1.3 Neural Blackboard Architecture (NBA)
- 9.1.4 The Integrated Connectionist/Symbolic Architecture (ICS)
- 9.1.5 Leabra
- 9.1.6 Dynamic Field Theory (DFT)
- 9.2 An evaluation
- 9.2.1 Representational structure
- 9.2.2 Performance concerns
- 9.2.3 Scientific merit
- 9.2.4 Summary
- 9.3 The same...
- 9.4 ...but different
- 9.5 The SPA versus the SOA
- 10 Consequences and challenges
- 10.1 Representation
- 10.2 Concepts
- 10.3 Inference
- 10.4 Dynamics
- 10.5 Challenges
- 10.6 Conclusion
- A Mathematical notation and overview
- A.1 Vectors
- A.2 Vector spaces
- A.3 The dot product
- A.4 Basis of a vector space
- A.5 Linear transformations on vectors
- A.6 Time derivatives for dynamics
- B Mathematical derivations for the NEF
- B.1 Representation
- B.1.1 Encoding
- B.1.2 Decoding
- B.2 Transformation
- B.3 Dynamics
- C Further details on deep semantic models
- C.1 The perceptual model
- C.2 The motor model
- D Mathematical derivations for the SPA
- D.1 Binding and unbinding HRRs
- D.2 Learning high-level transformations
- D.3 Ordinal serial encoding model
- D.4 Spike-timing dependent plasticity
- D.5 Number of neurons for representing structure
- E SPA model details
- E.1 Tower of Hanoi
- Bibliography
- Index
Details
Erscheinungsjahr: | 2015 |
---|---|
Fachbereich: | Allgemeines |
Genre: | Psychologie |
Rubrik: | Geisteswissenschaften |
Thema: | Lexika |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780190262129 |
ISBN-10: | 0190262125 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Eliasmith, Chris |
Hersteller: | Oxford University Press |
Maße: | 254 x 178 x 25 mm |
Von/Mit: | Chris Eliasmith |
Erscheinungsdatum: | 01.06.2015 |
Gewicht: | 0,887 kg |
Warnhinweis