Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
24,60 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Kategorien:
Beschreibung
"An accessible, straightforward guide that demystifies Artificial Intelligence for a general audience without the use of complex math or technical jargon. Covers the fundamentals, from classical models and neural networks to the large language models leading today's AI revolution"--
"An accessible, straightforward guide that demystifies Artificial Intelligence for a general audience without the use of complex math or technical jargon. Covers the fundamentals, from classical models and neural networks to the large language models leading today's AI revolution"--
Über den Autor
Ronald T. Kneusel is a data scientist who builds deep-learning (AI) systems, as well as extensive experience with medical imaging and the development of medical devices. He earned a PhD in machine learning from the University of Colorado, Boulder, has nearly 20 years of machine learning experience in industry, and is presently pursuing deep-learning projects with L3Harris Technologies, Inc. Kneusel is also the author of Random Numbers and Computers (Springer 2018), in addition to Math for Deep Learning, Practical Deep Learning, Strange Code, and The Art of Randomness—all published by No Starch Press.
Inhaltsverzeichnis
Acknowledgments
Preface
Chapter 1: And Away We Go: An AI Overview
Chapter 2: Why Now? A History of AI
Chapter 3: Classical Models: Old-School Machine Learning
Chapter 4: Neural Networks: Brain-Like AI
Chapter 5: Convolutional Neural Networks: AI Learns to See
Chapter 6: Generative AI: AI Gets Creative
Chapter 7: Large Language Models: True AI at Last?
Chapter 8: Musings: The Implications of AI
Glossary
Resources
Index
Preface
Chapter 1: And Away We Go: An AI Overview
Chapter 2: Why Now? A History of AI
Chapter 3: Classical Models: Old-School Machine Learning
Chapter 4: Neural Networks: Brain-Like AI
Chapter 5: Convolutional Neural Networks: AI Learns to See
Chapter 6: Generative AI: AI Gets Creative
Chapter 7: Large Language Models: True AI at Last?
Chapter 8: Musings: The Implications of AI
Glossary
Resources
Index
Details
Empfohlen (von): | 10 |
---|---|
Erscheinungsjahr: | 2023 |
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9781718503724 |
ISBN-10: | 1718503725 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Kneusel, Ronald T. |
Hersteller: |
Random House LLC US
No Starch Press |
Verantwortliche Person für die EU: | Springer Fachmedien Wiesbaden GmbH, Postfach:15 46, D-65189 Wiesbaden, info@bod.de |
Maße: | 234 x 177 x 13 mm |
Von/Mit: | Ronald T. Kneusel |
Erscheinungsdatum: | 24.10.2023 |
Gewicht: | 0,386 kg |
Über den Autor
Ronald T. Kneusel is a data scientist who builds deep-learning (AI) systems, as well as extensive experience with medical imaging and the development of medical devices. He earned a PhD in machine learning from the University of Colorado, Boulder, has nearly 20 years of machine learning experience in industry, and is presently pursuing deep-learning projects with L3Harris Technologies, Inc. Kneusel is also the author of Random Numbers and Computers (Springer 2018), in addition to Math for Deep Learning, Practical Deep Learning, Strange Code, and The Art of Randomness—all published by No Starch Press.
Inhaltsverzeichnis
Acknowledgments
Preface
Chapter 1: And Away We Go: An AI Overview
Chapter 2: Why Now? A History of AI
Chapter 3: Classical Models: Old-School Machine Learning
Chapter 4: Neural Networks: Brain-Like AI
Chapter 5: Convolutional Neural Networks: AI Learns to See
Chapter 6: Generative AI: AI Gets Creative
Chapter 7: Large Language Models: True AI at Last?
Chapter 8: Musings: The Implications of AI
Glossary
Resources
Index
Preface
Chapter 1: And Away We Go: An AI Overview
Chapter 2: Why Now? A History of AI
Chapter 3: Classical Models: Old-School Machine Learning
Chapter 4: Neural Networks: Brain-Like AI
Chapter 5: Convolutional Neural Networks: AI Learns to See
Chapter 6: Generative AI: AI Gets Creative
Chapter 7: Large Language Models: True AI at Last?
Chapter 8: Musings: The Implications of AI
Glossary
Resources
Index
Details
Empfohlen (von): | 10 |
---|---|
Erscheinungsjahr: | 2023 |
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Einband - flex.(Paperback) |
ISBN-13: | 9781718503724 |
ISBN-10: | 1718503725 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Kneusel, Ronald T. |
Hersteller: |
Random House LLC US
No Starch Press |
Verantwortliche Person für die EU: | Springer Fachmedien Wiesbaden GmbH, Postfach:15 46, D-65189 Wiesbaden, info@bod.de |
Maße: | 234 x 177 x 13 mm |
Von/Mit: | Ronald T. Kneusel |
Erscheinungsdatum: | 24.10.2023 |
Gewicht: | 0,386 kg |
Sicherheitshinweis