Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
55,20 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
Step-by-step guide to build high performing predictive applications
Key Features
Use the Python data analytics ecosystem to implement end-to-end predictive analytics projects
Explore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanations
Learn to deploy a predictive model's results as an interactive application
Book Description
Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages.
The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model.
Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics.
By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming.
What you will learn
Get to grips with the main concepts and principles of predictive analytics
Learn about the stages involved in producing complete predictive analytics solutions
Understand how to define a problem, propose a solution, and prepare a dataset
Use visualizations to explore relationships and gain insights into the dataset
Learn to build regression and classification models using scikit-learn
Use Keras to build powerful neural network models that produce accurate predictions
Learn to serve a model's predictions as a web application
Key Features
Use the Python data analytics ecosystem to implement end-to-end predictive analytics projects
Explore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanations
Learn to deploy a predictive model's results as an interactive application
Book Description
Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages.
The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model.
Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics.
By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming.
What you will learn
Get to grips with the main concepts and principles of predictive analytics
Learn about the stages involved in producing complete predictive analytics solutions
Understand how to define a problem, propose a solution, and prepare a dataset
Use visualizations to explore relationships and gain insights into the dataset
Learn to build regression and classification models using scikit-learn
Use Keras to build powerful neural network models that produce accurate predictions
Learn to serve a model's predictions as a web application
Step-by-step guide to build high performing predictive applications
Key Features
Use the Python data analytics ecosystem to implement end-to-end predictive analytics projects
Explore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanations
Learn to deploy a predictive model's results as an interactive application
Book Description
Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages.
The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model.
Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics.
By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming.
What you will learn
Get to grips with the main concepts and principles of predictive analytics
Learn about the stages involved in producing complete predictive analytics solutions
Understand how to define a problem, propose a solution, and prepare a dataset
Use visualizations to explore relationships and gain insights into the dataset
Learn to build regression and classification models using scikit-learn
Use Keras to build powerful neural network models that produce accurate predictions
Learn to serve a model's predictions as a web application
Key Features
Use the Python data analytics ecosystem to implement end-to-end predictive analytics projects
Explore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanations
Learn to deploy a predictive model's results as an interactive application
Book Description
Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages.
The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model.
Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics.
By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming.
What you will learn
Get to grips with the main concepts and principles of predictive analytics
Learn about the stages involved in producing complete predictive analytics solutions
Understand how to define a problem, propose a solution, and prepare a dataset
Use visualizations to explore relationships and gain insights into the dataset
Learn to build regression and classification models using scikit-learn
Use Keras to build powerful neural network models that produce accurate predictions
Learn to serve a model's predictions as a web application
Über den Autor
Alvaro Fuentes is a senior data scientist with a background in applied mathematics and economics. He has more than 14 years of experience in various analytical roles and is an analytics consultant at one of the 'Big Three' global management consulting firms, leading advanced analytics projects in different industries like banking, technology, and consumer goods. Alvaro is also an author and trainer in analytics and data science and has published courses and books, such as 'Become a Python Data Analyst' and 'Hands-On Predictive Analytics with Python'. He has also taught data science and related topics to thousands of students both on-site and online through different platforms such as Springboard, Simplilearn, Udemy, and BSG Institute, among others.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781789138719 |
ISBN-10: | 178913871X |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Fuentes, Alvaro |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 18 mm |
Von/Mit: | Alvaro Fuentes |
Erscheinungsdatum: | 28.12.2018 |
Gewicht: | 0,618 kg |
Über den Autor
Alvaro Fuentes is a senior data scientist with a background in applied mathematics and economics. He has more than 14 years of experience in various analytical roles and is an analytics consultant at one of the 'Big Three' global management consulting firms, leading advanced analytics projects in different industries like banking, technology, and consumer goods. Alvaro is also an author and trainer in analytics and data science and has published courses and books, such as 'Become a Python Data Analyst' and 'Hands-On Predictive Analytics with Python'. He has also taught data science and related topics to thousands of students both on-site and online through different platforms such as Springboard, Simplilearn, Udemy, and BSG Institute, among others.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Programmiersprachen |
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
ISBN-13: | 9781789138719 |
ISBN-10: | 178913871X |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Fuentes, Alvaro |
Hersteller: | Packt Publishing |
Maße: | 235 x 191 x 18 mm |
Von/Mit: | Alvaro Fuentes |
Erscheinungsdatum: | 28.12.2018 |
Gewicht: | 0,618 kg |
Warnhinweis