51,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Demonstrate machine learning techniques and algorithm
Understand supervised learning and unsupervised learning
Examine convolutional neural networks and Recurrent neural networks
Get acquainted with scikit-learn and PyTorch
Predict sequences in recurrent neural networks and long short term memory
Demonstrate machine learning techniques and algorithm
Understand supervised learning and unsupervised learning
Examine convolutional neural networks and Recurrent neural networks
Get acquainted with scikit-learn and PyTorch
Predict sequences in recurrent neural networks and long short term memory
Explains machine learning process through validation, evaluation, hyperparameter tuning and regularization
Discusses neural network architectures for predicting sequences in the form of Recurrent Neural Networks
Covers projects with an end-to-end solution with neural networks using Pytorch
Chapter 1: Getting Started with Python 3 and Jupyter Notebook.- Chapter 2: Getting Started with NumPy.- Chapter 3 : Introduction to Data Visualization.- Chapter 4 : Introduction to Pandas .- Chapter 5: Introduction to Machine Learning with Scikit-Learn.- Chapter 6: Preparing Data for Machine Learning.- Chapter 7: Supervised Learning Methods - 1.- Chapter 8: Tuning Supervised Learners.- Chapter 9: Supervised Learning Methods - 2.- Chapter 10: Ensemble Learning Methods.- Chapter 11: Unsupervised Learning Methods.- Chapter 12: Neural Networks and Pytorch Basics.- Chapter 13: Feedforward Neural Networks.- Chapter 14: Convolutional Neural Network.- Chapter 15: Recurrent Neural Network.- Chapter 16: Bringing It All Together.
Erscheinungsjahr: | 2022 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xx
335 S. 154 s/w Illustr. 335 p. 154 illus. |
ISBN-13: | 9781484279205 |
ISBN-10: | 1484279204 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Joshi, Aditya
Pajankar, Ashwin |
Auflage: | 1st edition |
Hersteller: | APRESS |
Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 254 x 178 x 20 mm |
Von/Mit: | Aditya Joshi (u. a.) |
Erscheinungsdatum: | 06.03.2022 |
Gewicht: | 0,67 kg |
Explains machine learning process through validation, evaluation, hyperparameter tuning and regularization
Discusses neural network architectures for predicting sequences in the form of Recurrent Neural Networks
Covers projects with an end-to-end solution with neural networks using Pytorch
Chapter 1: Getting Started with Python 3 and Jupyter Notebook.- Chapter 2: Getting Started with NumPy.- Chapter 3 : Introduction to Data Visualization.- Chapter 4 : Introduction to Pandas .- Chapter 5: Introduction to Machine Learning with Scikit-Learn.- Chapter 6: Preparing Data for Machine Learning.- Chapter 7: Supervised Learning Methods - 1.- Chapter 8: Tuning Supervised Learners.- Chapter 9: Supervised Learning Methods - 2.- Chapter 10: Ensemble Learning Methods.- Chapter 11: Unsupervised Learning Methods.- Chapter 12: Neural Networks and Pytorch Basics.- Chapter 13: Feedforward Neural Networks.- Chapter 14: Convolutional Neural Network.- Chapter 15: Recurrent Neural Network.- Chapter 16: Bringing It All Together.
Erscheinungsjahr: | 2022 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xx
335 S. 154 s/w Illustr. 335 p. 154 illus. |
ISBN-13: | 9781484279205 |
ISBN-10: | 1484279204 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Joshi, Aditya
Pajankar, Ashwin |
Auflage: | 1st edition |
Hersteller: | APRESS |
Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 254 x 178 x 20 mm |
Von/Mit: | Aditya Joshi (u. a.) |
Erscheinungsdatum: | 06.03.2022 |
Gewicht: | 0,67 kg |