Dekorationsartikel gehören nicht zum Leistungsumfang.
Handbook of Bioplastics and Biocomposites Engineering Applications
Buch von Inamuddin (u. a.)
Sprache: Englisch

250,50 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Handbook of Bioplastics and Biocomposites Engineering Applications

The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries.

Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO2 emissions.

The 30 chapters in the Handbook of Bioplastics and Biocomposites Engineering Applications discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated.

Audience

The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.
Handbook of Bioplastics and Biocomposites Engineering Applications

The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries.

Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO2 emissions.

The 30 chapters in the Handbook of Bioplastics and Biocomposites Engineering Applications discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated.

Audience

The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.
Über den Autor

Inamuddin, PhD, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia, and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in the multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has published about 190 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers.

Tariq Altalhi, PhD, is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his doctorate from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material. He also researches natural extracts and their application in the generation of value-added products such as nanomaterials.

Inhaltsverzeichnis
Preface xxi

Part I: Bioplastics, Synthesis and Process Technology 1

1 An Introduction to Engineering Applications of Bioplastics 3
Andreea Irina Barzic

1.1 Introduction 3

1.2 Classification of Bioplastics 4

1.3 Physical Properties 5

1.3.1 Rheological Properties 5

1.3.2 Optical Properties 6

1.3.3 Mechanical and Thermal Properties 7

1.3.4 Electrical Properties 7

1.4 Applications of Bioplastics in Engineering 8

1.4.1 Bioplastics Applications in Sensors 8

1.4.2 Bioplastics Applications in Energy Sector 10

1.4.3 Bioplastics Applications in Bioengineering 12

1.4.4 Bioplastics Applications in "Green" Electronics 13

1.5 Conclusions 16

Acknowledgement 17

Dedication 17

References 17

2 Biobased Materials: Types and Sources 23
Kushairi Mohd Salleh, Amalia Zulkifli, Nyak Syazwani Nyak Mazlan and Sarani Zakaria

2.1 Introduction 23

2.2 Biodegradable Biobased Material 25

2.2.1 Polysaccharides 25

2.2.2 Starch 26

2.2.3 Polylactic Acid 28

2.2.4 Cellulose 29

2.2.5 Esters 30

2.2.6 Ether 31

2.2.7 Chitosan 32

2.2.8 Alginate 33

2.2.9 Proteins 35

2.2.10 Gluten 36

2.2.11 Gelatine 37

2.2.12 Casein 38

2.2.13 Lipid 39

2.2.14 Polyhydroxyalkanoates (PHA) 40

2.3 Nonbiodegradable Biobased Material 41

2.3.1 Polyethylene (PE) 41

2.3.2 Polyethylene Terephthalate (PET) 42

2.3.3 Polyamide (PA) 43

2.4 Conclusion 44

Acknowledgment 45

References 45

3 Bioplastic From Renewable Biomass 49
N.B. Singh, Anindita De, Saroj K. Shukla and Mridula Guin

3.1 Introduction 49

3.2 Plastics and Bioplastics 50

3.2.1 Plastics 50

3.2.2 Bioplastics 51

3.3 Classification of Bioplastics 51

3.4 Bioplastic Production 53

3.4.1 Biowaste to Bioplastic 53

3.4.1.1 Lipid Rich Waste 53

3.4.2 Milk Industry Waste 54

3.4.3 Sugar Industry Waste 54

3.4.4 Spent Coffee Beans Waste 55

3.4.5 Bioplastic Agro-Forestry Residue 55

3.4.6 Bioplastic from Microorganism 56

3.4.7 Biomass-Based Polymers 57

3.4.7.1 Biomass-Based Monomers for Polymerization Process 57

3.5 Characterization of Bioplastics 58

3.6 Applications of Bioplastics 60

3.6.1 Food Packaging 60

3.6.2 Agricultural Applications 60

3.6.3 Biomedical Applications 63

3.7 Bioplastic Waste Management Strategies 65

3.7.1 Recycling of Poly(Lactic Acid) (PLA) 65

3.7.1.1 Mechanical Recycling of PLA 65

3.7.1.2 Chemical Recycling of PLA 65

3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) 67

3.7.3 Landfill 68

3.7.4 Incineration 68

3.7.5 Composting 68

3.7.6 Anaerobic Digestion 68

3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) 69

3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) 69

3.8 Conclusions and Future Prospects 70

References 71

4 Modeling of Natural Fiber-Based Biocomposites 81
Fatima-Zahra Semlali Aouragh Hassani, Mounir El Achaby, Abou el Kacem Qaiss and Rachid Bouhfid

4.1 Introduction 81

4.2 Generality of Biocomposites 82

4.2.1 Natural Matrix 83

4.2.2 Natural Reinforcement 84

4.2.3 Natural Fiber Classification 84

4.2.4 Biocomposites Processing 85

4.2.4.1 Extrusion and Injection 85

4.2.4.2 Compression Molding 86

4.2.5 RTM-Resin Transfer Molding 86

4.2.6 Hand Lay-Up Technique 86

4.3 Parameters Affecting the Biocomposites Properties 87

4.3.1 Fiber's Aspect Ratio 87

4.3.2 Fiber/Matrix Interfacial Adhesion 88

4.3.3 Fibers Orientation and Dispersion 89

4.3.3.1 Short Fibers Orientation 89

4.3.3.2 Fiber's Orientation in Simple Shear Flow 90

4.3.3.3 Fiber's Orientation in Elongational Flow 90

4.4 Process Molding of Biocomposites 92

4.4.1 Unidirectional Fibers 93

4.4.1.1 Classical Laminate Theory 93

4.4.1.2 Rule of Mixture 93

4.4.1.3 Halpin-Tsai Model 95

4.4.1.4 Hui-Shia Model 95

4.4.2 Random Fibers 96

4.4.2.1 Hirsch Model 96

4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) 97

4.4.2.3 Tsai-Pagano Model 97

4.5 Conclusion 97

References 98

5 Process Modeling in Biocomposites 103
Joy Hoskeri H., Nivedita Pujari S. and Arun K. Shettar

5.1 Introduction 103

5.2 Biopolymer Composites 104

5.2.1 Natural Fiber-Based Biopolymer Composites 104

5.2.2 Applications of Biopolymer Composites 105

5.2.3 Properties of Biopolymer Composites 107

5.3 Classification of Biocomposites 108

5.3.1 PLA Biocomposites 109

5.3.2 Nanobiocomposites 109

5.3.3 Hybrid Biocomposites 109

5.3.4 Natural Fiber-Based Composites 109

5.4 Process Modeling of Biocomposite Models 110

5.4.1 Compression Moulding 110

5.4.2 Injection Moulding 111

5.4.3 Extrusion Method 112

5.5 Formulation of Models 112

5.5.1 Types of Model 113

5.6 Conclusion 113

References 115

6 Microbial Technology in Bioplastic Production and Engineering 121
Dileep Francis and Deepu Joy Parayil

6.1 Introduction 121

6.2 Fundamental Principles of Microbial Bioplastic Production 123

6.3 Bioplastics Obtained Directly from Microorganisms 125

6.3.1 Pha 125

6.3.2 Poly (gamma-Glutamic Acid) (PGA) 129

6.4 Bioplastics from Microbial Monomers 130

6.4.1 Bioplastics from Aliphatic Monomers 130

6.4.1.1 Pla 130

6.4.1.2 Poly (Butylene Succinate) 133

6.4.1.3 Biopolyamides (Nylons) 134

6.4.1.4 1, 3-Propanediol (PDO) 137

6.4.2 Bioplastics from Aromatic Monomers 137

6.5 Lignocellulosic Biomass for Bioplastic Production 138

6.6 Conclusion 140

References 140

7 Synthesis of Green Bioplastics 149
J.E. Castanheiro, P.A. Mourão and I. Cansado

7.1 Introduction 149

7.2 Bioplastic 150

7.2.1 Polyhydroxyalkanoates (PHAs) 150

7.2.2 Poly(lactic acid) (PLA) 151

7.2.3 Cellulose 152

7.2.4 Starch 153

7.3 Renewable Raw Material to Produce Bioplastic 153

7.3.1 Raw Material from Agriculture 153

7.3.2 Organic Waste as Resources for Bioplastic Production 153

7.3.3 Algae as Resources for Bioplastic Production 153

7.3.4 Wastewater as Resources for Bioplastic Production 154

7.4 Bioplastics Applications 155

7.4.1 Food Industry 155

7.4.2 Agricultural Applications 156

7.4.3 Medical Applications 156

7.4.4 Other Applications 156

7.5 Conclusions 156

References 157

8 Natural Oil-Based Sustainable Materials for a Green Strategy 161
Figen Balo, Berrak Aksakal , Lutfu S. Sua and Zeliha Mahmat

8.1 Introduction 161

8.2 Methodology 164

8.2.1 Entropy Methodology 165

8.2.2 Copras Methodology 167

8.3 Conclusions 171

References 172

Part II: Applications of Bioplastics in Health and Hygiene 175

9 Biomedical Applications of Bioplastics 177
Syed Tareq, Jaison Jeevanandam, Caleb Acquah and Michael K. Danquah

9.1 Introduction 177

9.2 Synthesis of Bioplastics 180

9.2.1 Starch-Based Bioplastics 181

9.2.2 Cellulose-Based Bioplastics 181

9.2.3 Chitin and Chitosan 181

9.2.4 Polyhydroxyalkanoates (PHA) 181

9.2.5 Polylactic Acid (PLA) 182

9.2.6 Bioplastics from Microalgae 182

9.3 Properties of Bioplastics 183

9.3.1 Material Strength 183

9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic 184

9.4 Biological Properties of Bioplastics 184

9.5 Biomedical Applications of Bioplastics 185

9.5.1 Antimicrobial Property 185

9.5.2 Biocontrol Agents 187

9.5.3 Pharmaceutical Applications of Bioplastics 187

9.5.4 Implantation 188

9.5.5 Tissue Engineering Applications 189

9.5.6 Memory Enhancer 189

9.6 Limitations 190

9.7 Conclusion 191

References 191

10 Applications of Bioplastics in Hygiene Cosmetic 199
Anuradha and Jagvir Singh

10.1 Introduction 199

10.2 The Need to Find an Alternative to Plastic 200

10.3 Bioplastics 201

10.3.1 Characteristic of Bioplastics 201

10.3.2 Types (Classification) 202

10.3.3 Uses of Bioplastics 202

10.4 Resources of Bioplastic 202

10.4.1 Polysaccharides 202

10.4.2 Starch or Amylum 202

10.4.3 Cellulose 203

10.4.3.1 Source of Cellulose 204

10.5 Use of Biodegradable Materials in Packaging 204

10.6 Bionanocomposite 204

10.7 Hygiene Cosmetic Packaging 206

10.8 Conclusion 206

References 207

11 Biodegradable Polymers in Drug Delivery 211
Ariane Regina Souza Rossin, Fabiana Cardoso Lima, Camila Cassia Cordeiro, Erica Fernanda Poruczinski, Josiane Caetano and Douglas Cardoso Dragunski

11.1 Introduction 211

11.2 Biodegradable Polymer (BP) 212

11.2.1 Natural 212

11.2.1.1 Polysaccharides 213

11.2.1.2 Proteins 214

11.2.2 Synthetic 214

11.2.2.1 Polyesters 215

11.2.2.2 Polyanhydrides 215

11.2.2.3 Polycarbonates 216

11.2.2.4 Polyphosphazenes 216

11.2.2.5 Polyurethanes 216

11.3 Device Types 217

11.3.1 Three-Dimensional Printing Devices 217

11.3.1.1 Implants 217

11.3.1.2 Tablets 217

11.3.1.3 Microneedles 218

11.3.1.4 Nanofibers 218

11.3.2 Nanocarriers 218

11.3.2.1 Nanoparticles 218

11.3.2.2 Dendrimers 219

11.3.2.3 Hydrogels 219

11.4 Applications 219

11.4.1 Intravenous 219

11.4.2 Transdermal 220

11.4.3 Oral 221

11.4.4 Ocular 221

11.5 Existing Materials in the Market 221

11.6 Conclusions and Future Projections 222

References 223

12 Microorganism-Derived Bioplastics for Clinical Applications 229
Namrata Sangwan, Arushi Chauhan, Jitender Singh and Pramod K. Avti

12.1 Introduction 229

12.2 Types of Bioplastics 231

12.2.1 Poly(3-hydroxybutyrate) (PHB) 231

12.2.2 Polyhydroxyalkanoate 232

12.2.3 Poly-Lactic Acid 233

12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) 234

12.2.5 Poly (epsilon-caprolactone) (PCL) 235

12.3 Properties of Bioplastics 235

12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics 236

12.3.1.1 Polylactic Acid 236

12.3.1.2 Poly Lactic-co-Glycolic Acid 236

12.3.1.3 Polycaprolactone 237

12.3.1.4 Polyhydroxyalkanoates 237

12.3.1.5 Polyethylene Glycol (PEG) 238

12.4 Applications 238

12.4.1 Tissue Engineering 238

12.4.2 Drug Delivery System 240

12.4.3 Implants and Prostheses 242

12.5 Conclusion 244

References 245

13 Biomedical Applications of Biocomposites Derived From Cellulose 251
Subhajit Kundu, Debarati Mitra and Mahuya Das

13.1 Introduction 251

13.2 Importance of Cellulose in the Field of Biocomposite 252

13.3 Classification of Cellulose 252

13.4 Synthesis of Cellulose in Different Form 253

13.4.1 Mechanical Extraction 253

13.4.2 Electrochemical Method 254

13.4.3 Chemical Extraction 254

13.4.4 Enzymatic Hydrolysis 254

13.4.5 Bacterial Production of Cellulose 256

13.5 Formation of...
Details
Erscheinungsjahr: 2022
Fachbereich: Populäre Darstellungen
Genre: Chemie
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Seiten: 688
Inhalt: 688 S.
ISBN-13: 9781119160137
ISBN-10: 1119160138
Sprache: Englisch
Herstellernummer: 1W119160130
Einband: Gebunden
Redaktion: Inamuddin
Altalhi, Tariq
Herausgeber: Inamuddin/Tariq Altalhi
Auflage: 2nd edition
Hersteller: Wiley
Maße: 263 x 183 x 43 mm
Von/Mit: Inamuddin (u. a.)
Erscheinungsdatum: 28.12.2022
Gewicht: 1,488 kg
preigu-id: 103598307
Über den Autor

Inamuddin, PhD, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia, and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in the multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has published about 190 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers.

Tariq Altalhi, PhD, is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his doctorate from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material. He also researches natural extracts and their application in the generation of value-added products such as nanomaterials.

Inhaltsverzeichnis
Preface xxi

Part I: Bioplastics, Synthesis and Process Technology 1

1 An Introduction to Engineering Applications of Bioplastics 3
Andreea Irina Barzic

1.1 Introduction 3

1.2 Classification of Bioplastics 4

1.3 Physical Properties 5

1.3.1 Rheological Properties 5

1.3.2 Optical Properties 6

1.3.3 Mechanical and Thermal Properties 7

1.3.4 Electrical Properties 7

1.4 Applications of Bioplastics in Engineering 8

1.4.1 Bioplastics Applications in Sensors 8

1.4.2 Bioplastics Applications in Energy Sector 10

1.4.3 Bioplastics Applications in Bioengineering 12

1.4.4 Bioplastics Applications in "Green" Electronics 13

1.5 Conclusions 16

Acknowledgement 17

Dedication 17

References 17

2 Biobased Materials: Types and Sources 23
Kushairi Mohd Salleh, Amalia Zulkifli, Nyak Syazwani Nyak Mazlan and Sarani Zakaria

2.1 Introduction 23

2.2 Biodegradable Biobased Material 25

2.2.1 Polysaccharides 25

2.2.2 Starch 26

2.2.3 Polylactic Acid 28

2.2.4 Cellulose 29

2.2.5 Esters 30

2.2.6 Ether 31

2.2.7 Chitosan 32

2.2.8 Alginate 33

2.2.9 Proteins 35

2.2.10 Gluten 36

2.2.11 Gelatine 37

2.2.12 Casein 38

2.2.13 Lipid 39

2.2.14 Polyhydroxyalkanoates (PHA) 40

2.3 Nonbiodegradable Biobased Material 41

2.3.1 Polyethylene (PE) 41

2.3.2 Polyethylene Terephthalate (PET) 42

2.3.3 Polyamide (PA) 43

2.4 Conclusion 44

Acknowledgment 45

References 45

3 Bioplastic From Renewable Biomass 49
N.B. Singh, Anindita De, Saroj K. Shukla and Mridula Guin

3.1 Introduction 49

3.2 Plastics and Bioplastics 50

3.2.1 Plastics 50

3.2.2 Bioplastics 51

3.3 Classification of Bioplastics 51

3.4 Bioplastic Production 53

3.4.1 Biowaste to Bioplastic 53

3.4.1.1 Lipid Rich Waste 53

3.4.2 Milk Industry Waste 54

3.4.3 Sugar Industry Waste 54

3.4.4 Spent Coffee Beans Waste 55

3.4.5 Bioplastic Agro-Forestry Residue 55

3.4.6 Bioplastic from Microorganism 56

3.4.7 Biomass-Based Polymers 57

3.4.7.1 Biomass-Based Monomers for Polymerization Process 57

3.5 Characterization of Bioplastics 58

3.6 Applications of Bioplastics 60

3.6.1 Food Packaging 60

3.6.2 Agricultural Applications 60

3.6.3 Biomedical Applications 63

3.7 Bioplastic Waste Management Strategies 65

3.7.1 Recycling of Poly(Lactic Acid) (PLA) 65

3.7.1.1 Mechanical Recycling of PLA 65

3.7.1.2 Chemical Recycling of PLA 65

3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) 67

3.7.3 Landfill 68

3.7.4 Incineration 68

3.7.5 Composting 68

3.7.6 Anaerobic Digestion 68

3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) 69

3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) 69

3.8 Conclusions and Future Prospects 70

References 71

4 Modeling of Natural Fiber-Based Biocomposites 81
Fatima-Zahra Semlali Aouragh Hassani, Mounir El Achaby, Abou el Kacem Qaiss and Rachid Bouhfid

4.1 Introduction 81

4.2 Generality of Biocomposites 82

4.2.1 Natural Matrix 83

4.2.2 Natural Reinforcement 84

4.2.3 Natural Fiber Classification 84

4.2.4 Biocomposites Processing 85

4.2.4.1 Extrusion and Injection 85

4.2.4.2 Compression Molding 86

4.2.5 RTM-Resin Transfer Molding 86

4.2.6 Hand Lay-Up Technique 86

4.3 Parameters Affecting the Biocomposites Properties 87

4.3.1 Fiber's Aspect Ratio 87

4.3.2 Fiber/Matrix Interfacial Adhesion 88

4.3.3 Fibers Orientation and Dispersion 89

4.3.3.1 Short Fibers Orientation 89

4.3.3.2 Fiber's Orientation in Simple Shear Flow 90

4.3.3.3 Fiber's Orientation in Elongational Flow 90

4.4 Process Molding of Biocomposites 92

4.4.1 Unidirectional Fibers 93

4.4.1.1 Classical Laminate Theory 93

4.4.1.2 Rule of Mixture 93

4.4.1.3 Halpin-Tsai Model 95

4.4.1.4 Hui-Shia Model 95

4.4.2 Random Fibers 96

4.4.2.1 Hirsch Model 96

4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) 97

4.4.2.3 Tsai-Pagano Model 97

4.5 Conclusion 97

References 98

5 Process Modeling in Biocomposites 103
Joy Hoskeri H., Nivedita Pujari S. and Arun K. Shettar

5.1 Introduction 103

5.2 Biopolymer Composites 104

5.2.1 Natural Fiber-Based Biopolymer Composites 104

5.2.2 Applications of Biopolymer Composites 105

5.2.3 Properties of Biopolymer Composites 107

5.3 Classification of Biocomposites 108

5.3.1 PLA Biocomposites 109

5.3.2 Nanobiocomposites 109

5.3.3 Hybrid Biocomposites 109

5.3.4 Natural Fiber-Based Composites 109

5.4 Process Modeling of Biocomposite Models 110

5.4.1 Compression Moulding 110

5.4.2 Injection Moulding 111

5.4.3 Extrusion Method 112

5.5 Formulation of Models 112

5.5.1 Types of Model 113

5.6 Conclusion 113

References 115

6 Microbial Technology in Bioplastic Production and Engineering 121
Dileep Francis and Deepu Joy Parayil

6.1 Introduction 121

6.2 Fundamental Principles of Microbial Bioplastic Production 123

6.3 Bioplastics Obtained Directly from Microorganisms 125

6.3.1 Pha 125

6.3.2 Poly (gamma-Glutamic Acid) (PGA) 129

6.4 Bioplastics from Microbial Monomers 130

6.4.1 Bioplastics from Aliphatic Monomers 130

6.4.1.1 Pla 130

6.4.1.2 Poly (Butylene Succinate) 133

6.4.1.3 Biopolyamides (Nylons) 134

6.4.1.4 1, 3-Propanediol (PDO) 137

6.4.2 Bioplastics from Aromatic Monomers 137

6.5 Lignocellulosic Biomass for Bioplastic Production 138

6.6 Conclusion 140

References 140

7 Synthesis of Green Bioplastics 149
J.E. Castanheiro, P.A. Mourão and I. Cansado

7.1 Introduction 149

7.2 Bioplastic 150

7.2.1 Polyhydroxyalkanoates (PHAs) 150

7.2.2 Poly(lactic acid) (PLA) 151

7.2.3 Cellulose 152

7.2.4 Starch 153

7.3 Renewable Raw Material to Produce Bioplastic 153

7.3.1 Raw Material from Agriculture 153

7.3.2 Organic Waste as Resources for Bioplastic Production 153

7.3.3 Algae as Resources for Bioplastic Production 153

7.3.4 Wastewater as Resources for Bioplastic Production 154

7.4 Bioplastics Applications 155

7.4.1 Food Industry 155

7.4.2 Agricultural Applications 156

7.4.3 Medical Applications 156

7.4.4 Other Applications 156

7.5 Conclusions 156

References 157

8 Natural Oil-Based Sustainable Materials for a Green Strategy 161
Figen Balo, Berrak Aksakal , Lutfu S. Sua and Zeliha Mahmat

8.1 Introduction 161

8.2 Methodology 164

8.2.1 Entropy Methodology 165

8.2.2 Copras Methodology 167

8.3 Conclusions 171

References 172

Part II: Applications of Bioplastics in Health and Hygiene 175

9 Biomedical Applications of Bioplastics 177
Syed Tareq, Jaison Jeevanandam, Caleb Acquah and Michael K. Danquah

9.1 Introduction 177

9.2 Synthesis of Bioplastics 180

9.2.1 Starch-Based Bioplastics 181

9.2.2 Cellulose-Based Bioplastics 181

9.2.3 Chitin and Chitosan 181

9.2.4 Polyhydroxyalkanoates (PHA) 181

9.2.5 Polylactic Acid (PLA) 182

9.2.6 Bioplastics from Microalgae 182

9.3 Properties of Bioplastics 183

9.3.1 Material Strength 183

9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic 184

9.4 Biological Properties of Bioplastics 184

9.5 Biomedical Applications of Bioplastics 185

9.5.1 Antimicrobial Property 185

9.5.2 Biocontrol Agents 187

9.5.3 Pharmaceutical Applications of Bioplastics 187

9.5.4 Implantation 188

9.5.5 Tissue Engineering Applications 189

9.5.6 Memory Enhancer 189

9.6 Limitations 190

9.7 Conclusion 191

References 191

10 Applications of Bioplastics in Hygiene Cosmetic 199
Anuradha and Jagvir Singh

10.1 Introduction 199

10.2 The Need to Find an Alternative to Plastic 200

10.3 Bioplastics 201

10.3.1 Characteristic of Bioplastics 201

10.3.2 Types (Classification) 202

10.3.3 Uses of Bioplastics 202

10.4 Resources of Bioplastic 202

10.4.1 Polysaccharides 202

10.4.2 Starch or Amylum 202

10.4.3 Cellulose 203

10.4.3.1 Source of Cellulose 204

10.5 Use of Biodegradable Materials in Packaging 204

10.6 Bionanocomposite 204

10.7 Hygiene Cosmetic Packaging 206

10.8 Conclusion 206

References 207

11 Biodegradable Polymers in Drug Delivery 211
Ariane Regina Souza Rossin, Fabiana Cardoso Lima, Camila Cassia Cordeiro, Erica Fernanda Poruczinski, Josiane Caetano and Douglas Cardoso Dragunski

11.1 Introduction 211

11.2 Biodegradable Polymer (BP) 212

11.2.1 Natural 212

11.2.1.1 Polysaccharides 213

11.2.1.2 Proteins 214

11.2.2 Synthetic 214

11.2.2.1 Polyesters 215

11.2.2.2 Polyanhydrides 215

11.2.2.3 Polycarbonates 216

11.2.2.4 Polyphosphazenes 216

11.2.2.5 Polyurethanes 216

11.3 Device Types 217

11.3.1 Three-Dimensional Printing Devices 217

11.3.1.1 Implants 217

11.3.1.2 Tablets 217

11.3.1.3 Microneedles 218

11.3.1.4 Nanofibers 218

11.3.2 Nanocarriers 218

11.3.2.1 Nanoparticles 218

11.3.2.2 Dendrimers 219

11.3.2.3 Hydrogels 219

11.4 Applications 219

11.4.1 Intravenous 219

11.4.2 Transdermal 220

11.4.3 Oral 221

11.4.4 Ocular 221

11.5 Existing Materials in the Market 221

11.6 Conclusions and Future Projections 222

References 223

12 Microorganism-Derived Bioplastics for Clinical Applications 229
Namrata Sangwan, Arushi Chauhan, Jitender Singh and Pramod K. Avti

12.1 Introduction 229

12.2 Types of Bioplastics 231

12.2.1 Poly(3-hydroxybutyrate) (PHB) 231

12.2.2 Polyhydroxyalkanoate 232

12.2.3 Poly-Lactic Acid 233

12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) 234

12.2.5 Poly (epsilon-caprolactone) (PCL) 235

12.3 Properties of Bioplastics 235

12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics 236

12.3.1.1 Polylactic Acid 236

12.3.1.2 Poly Lactic-co-Glycolic Acid 236

12.3.1.3 Polycaprolactone 237

12.3.1.4 Polyhydroxyalkanoates 237

12.3.1.5 Polyethylene Glycol (PEG) 238

12.4 Applications 238

12.4.1 Tissue Engineering 238

12.4.2 Drug Delivery System 240

12.4.3 Implants and Prostheses 242

12.5 Conclusion 244

References 245

13 Biomedical Applications of Biocomposites Derived From Cellulose 251
Subhajit Kundu, Debarati Mitra and Mahuya Das

13.1 Introduction 251

13.2 Importance of Cellulose in the Field of Biocomposite 252

13.3 Classification of Cellulose 252

13.4 Synthesis of Cellulose in Different Form 253

13.4.1 Mechanical Extraction 253

13.4.2 Electrochemical Method 254

13.4.3 Chemical Extraction 254

13.4.4 Enzymatic Hydrolysis 254

13.4.5 Bacterial Production of Cellulose 256

13.5 Formation of...
Details
Erscheinungsjahr: 2022
Fachbereich: Populäre Darstellungen
Genre: Chemie
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Seiten: 688
Inhalt: 688 S.
ISBN-13: 9781119160137
ISBN-10: 1119160138
Sprache: Englisch
Herstellernummer: 1W119160130
Einband: Gebunden
Redaktion: Inamuddin
Altalhi, Tariq
Herausgeber: Inamuddin/Tariq Altalhi
Auflage: 2nd edition
Hersteller: Wiley
Maße: 263 x 183 x 43 mm
Von/Mit: Inamuddin (u. a.)
Erscheinungsdatum: 28.12.2022
Gewicht: 1,488 kg
preigu-id: 103598307
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte