Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Guide to Graph Algorithms
Sequential, Parallel and Distributed
Taschenbuch von K. Erciyes
Sprache: Englisch

49,45 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
This clearly structured textbook/reference presents a detailed and comprehensive review of the fundamental principles of sequential graph algorithms, approaches for NP-hard graph problems, and approximation algorithms and heuristics for such problems. The work also provides a comparative analysis of sequential, parallel and distributed graph algorithms ¿ including algorithms for big data ¿ and an investigation into the conversion principles between the three algorithmic methods.Topics and features: presents a comprehensive analysis of sequential graph algorithms; offers a unifying view by examining the same graph problem from each of the three paradigms of sequential, parallel and distributed algorithms; describes methods for the conversion between sequential, parallel and distributed graph algorithms; surveys methods for the analysis of large graphs and complex network applications; includes full implementation details for the problems presented throughout the text; provides additional supporting material at an accompanying website.

This practical guide to the design and analysis of graph algorithms is ideal for advanced and graduate students of computer science, electrical and electronic engineering, and bioinformatics. The material covered will also be of value to any researcher familiar with the basics of discrete mathematics, graph theory and algorithms.
This clearly structured textbook/reference presents a detailed and comprehensive review of the fundamental principles of sequential graph algorithms, approaches for NP-hard graph problems, and approximation algorithms and heuristics for such problems. The work also provides a comparative analysis of sequential, parallel and distributed graph algorithms ¿ including algorithms for big data ¿ and an investigation into the conversion principles between the three algorithmic methods.Topics and features: presents a comprehensive analysis of sequential graph algorithms; offers a unifying view by examining the same graph problem from each of the three paradigms of sequential, parallel and distributed algorithms; describes methods for the conversion between sequential, parallel and distributed graph algorithms; surveys methods for the analysis of large graphs and complex network applications; includes full implementation details for the problems presented throughout the text; provides additional supporting material at an accompanying website.

This practical guide to the design and analysis of graph algorithms is ideal for advanced and graduate students of computer science, electrical and electronic engineering, and bioinformatics. The material covered will also be of value to any researcher familiar with the basics of discrete mathematics, graph theory and algorithms.
Über den Autor
Dr. K. Erciyes
is an Emeritus Professor of Computer Engineering at Ege University, Turkey. His other publications include the Springer titles
Distributed Graph Algorithms for Computer Networks
and
Distributed and Sequential Algorithms for Bioinformatics
.
Zusammenfassung

Presents detailed coverage of sequential graph algorithms, together with some sample parallel and distributed graph algorithm design methods

Provides a comparative analysis of the three methods of sequential, parallel and distributed graph algorithms

Describes techniques for conversion between the different methods

Inhaltsverzeichnis
Introduction.-
Part I: Fundamentals
.- Introduction to Graphs.- Graph Algorithms.- Parallel Graph Algorithms.- Distributed Graph Algorithms.-
Part II: Basic Graph Algorithms
.- Trees and Graph Traversals.- Weighted Graphs.- Connectivity.- Matching.- Independence, Domination and Vertex Cover.- Coloring.-
Part III: Advanced Topics
.- Algebraic and Dynamic Graph Algorithms.- Analysis of Large Graphs.- Complex Networks.- Epilogue.- Appendix A: Pseudocode Conventions.- Appendix B: Linear Algebra Review.
Details
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Medium: Taschenbuch
Reihe: Texts in Computer Science
Inhalt: xviii
471 S.
246 s/w Illustr.
1 farbige Illustr.
471 p. 247 illus.
1 illus. in color.
ISBN-13: 9783030103385
ISBN-10: 3030103382
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Erciyes, K.
Auflage: Softcover reprint of the original 1st ed. 2018
Hersteller: Springer International Publishing
Springer International Publishing AG
Texts in Computer Science
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 25 mm
Von/Mit: K. Erciyes
Erscheinungsdatum: 01.02.2019
Gewicht: 0,842 kg
Artikel-ID: 116045374
Über den Autor
Dr. K. Erciyes
is an Emeritus Professor of Computer Engineering at Ege University, Turkey. His other publications include the Springer titles
Distributed Graph Algorithms for Computer Networks
and
Distributed and Sequential Algorithms for Bioinformatics
.
Zusammenfassung

Presents detailed coverage of sequential graph algorithms, together with some sample parallel and distributed graph algorithm design methods

Provides a comparative analysis of the three methods of sequential, parallel and distributed graph algorithms

Describes techniques for conversion between the different methods

Inhaltsverzeichnis
Introduction.-
Part I: Fundamentals
.- Introduction to Graphs.- Graph Algorithms.- Parallel Graph Algorithms.- Distributed Graph Algorithms.-
Part II: Basic Graph Algorithms
.- Trees and Graph Traversals.- Weighted Graphs.- Connectivity.- Matching.- Independence, Domination and Vertex Cover.- Coloring.-
Part III: Advanced Topics
.- Algebraic and Dynamic Graph Algorithms.- Analysis of Large Graphs.- Complex Networks.- Epilogue.- Appendix A: Pseudocode Conventions.- Appendix B: Linear Algebra Review.
Details
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Medium: Taschenbuch
Reihe: Texts in Computer Science
Inhalt: xviii
471 S.
246 s/w Illustr.
1 farbige Illustr.
471 p. 247 illus.
1 illus. in color.
ISBN-13: 9783030103385
ISBN-10: 3030103382
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Erciyes, K.
Auflage: Softcover reprint of the original 1st ed. 2018
Hersteller: Springer International Publishing
Springer International Publishing AG
Texts in Computer Science
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 25 mm
Von/Mit: K. Erciyes
Erscheinungsdatum: 01.02.2019
Gewicht: 0,842 kg
Artikel-ID: 116045374
Sicherheitshinweis