Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Grundstrukturen der Analysis II
Taschenbuch von W. Gähler
Sprache: Deutsch

49,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei­ neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten­ regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all­ gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür­ lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso­ morphien sind.
Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei­ neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten­ regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all­ gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür­ lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso­ morphien sind.
Details
Erscheinungsjahr: 2014
Fachbereich: Allgemeines
Genre: Recht, Sozialwissenschaften, Wirtschaft
Rubrik: Sozialwissenschaften
Medium: Taschenbuch
Inhalt: viii
623 S.
ISBN-13: 9783034852876
ISBN-10: 3034852878
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Gähler, W.
Auflage: Softcover reprint of the original 1st edition 1978
Hersteller: Springer Basel
Birkhäuser Basel
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 244 x 170 x 34 mm
Von/Mit: W. Gähler
Erscheinungsdatum: 23.08.2014
Gewicht: 1,074 kg
Artikel-ID: 105089886
Details
Erscheinungsjahr: 2014
Fachbereich: Allgemeines
Genre: Recht, Sozialwissenschaften, Wirtschaft
Rubrik: Sozialwissenschaften
Medium: Taschenbuch
Inhalt: viii
623 S.
ISBN-13: 9783034852876
ISBN-10: 3034852878
Sprache: Deutsch
Einband: Kartoniert / Broschiert
Autor: Gähler, W.
Auflage: Softcover reprint of the original 1st edition 1978
Hersteller: Springer Basel
Birkhäuser Basel
Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com
Maße: 244 x 170 x 34 mm
Von/Mit: W. Gähler
Erscheinungsdatum: 23.08.2014
Gewicht: 1,074 kg
Artikel-ID: 105089886
Sicherheitshinweis