Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
72,25 €
-16 % UVP 85,59 €
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Kategorien:
Beschreibung
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology.
Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability.
This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability.
This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology.
Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability.
This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability.
This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Über den Autor
Clara Löh is Professor of Mathematics at the University of Regensburg, Germany. Her research focuses on the interaction between geometric topology, geometric group theory, and measurable group theory. This includes cohomological, geometric, and combinatorial methods.
Zusammenfassung
Features more than 250 exercises of varying difficulty including programming tasks
Introduces the key notions from quasi-geometry, such as growth, hyperbolicity, boundary constructions and amenability
Assumes only a basic background in group theory, metric spaces and point-set topology
Inhaltsverzeichnis
1 Introduction.- Part I Groups.- 2 Generating groups.- Part II Groups > Geometry.- 3 Cayley graphs.- 4 Group actions.- 5 Quasi-isometry.- Part III Geometry of groups.- 6 Growth types of groups.- 7 Hyperbolic groups.- 8 Ends and boundaries.- 9 Amenable groups.- Part IV Reference material.- A Appendix.- Bibliography.- Indices.
Details
Erscheinungsjahr: | 2018 |
---|---|
Fachbereich: | Arithmetik & Algebra |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xi
389 S. 19 s/w Illustr. 100 farbige Illustr. 389 p. 119 illus. 100 illus. in color. |
ISBN-13: | 9783319722535 |
ISBN-10: | 3319722530 |
Sprache: | Englisch |
Herstellernummer: | 978-3-319-72253-5 |
Einband: | Kartoniert / Broschiert |
Autor: | Löh, Clara |
Auflage: | 1st edition 2017 |
Hersteller: |
Springer International Publishing
Springer International Publishing AG |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 22 mm |
Von/Mit: | Clara Löh |
Erscheinungsdatum: | 19.01.2018 |
Gewicht: | 0,61 kg |