Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Geocomputation with Python
Taschenbuch von Anita Graser (u. a.)
Sprache: Englisch

82,30 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

Geocomputation with Python is a comprehensive resource for working with geographic data with the most popular programming language in the world. The book gives an overview of Python's capabilities for spatial data analysis, as well as many examples covering a range of GIS operations.

Geocomputation with Python is a comprehensive resource for working with geographic data with the most popular programming language in the world. The book gives an overview of Python's capabilities for spatial data analysis, as well as many examples covering a range of GIS operations.

Über den Autor

Michael Dorman, Ph.D. is a programmer and lecturer at The Department of Environmental, Geoinformatics and Urban Planning Sciences, Ben-Gurion University of the Negev. He is working with researchers and students to develop computational workflows for spatial analysis, mostly through programming in Python, R, and JavaScript, as well as teaching those subjects.

Anita Graser, Ph.D. is a Senior Scientist at the Austrian Institute of Technology (AIT), QGIS PSC member and lead developer of MovingPandas. Anita has published several books about QGIS, including "Learning QGIS" and "QGIS Map Design", teaches Python for QGIS, and writes a popular spatial data science blog.

Jakub Nowosad, Ph.D. is an Associate Professor at Adam Mickiewicz University in Poznä and a visiting scientist at the University of Münster. Specializing in spatial pattern analysis in environmental studies, he combines research with a dedication to education and open science principles. Dr. Nowosad is committed to developing scientific software and fostering accessible knowledge through teaching and open-source contributions.

Robin Lovelace, Ph.D. is a Professor of Transport Data Science at the University of Leeds., He is the developer of high impact applications for more data-driven transport planning and policy. He has a decade's experience researching and teaching data science with geographic data and has developed numerous tools to support more data-driven policies, including the award-winning Propensity to Cycle Tool which has transformed the practice of strategic active travel network planning in the UK.

Inhaltsverzeichnis

Preface 1. Geographic data in Python 2. Attribute data operations 3. Spatial data operations 4. Geometry operations 5. Raster-vector interactions 6. Reprojecting geographic data 7. Geographic data I/O 8. Making maps with Python References

Details
Erscheinungsjahr: 2025
Fachbereich: Grundlagen (Methodik & Statistik)
Genre: Importe, Psychologie
Rubrik: Geisteswissenschaften
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9781032460659
ISBN-10: 1032460652
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Graser, Anita
Nowosad, Jakub
Dorman, Michael
Lovelace, Robin
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 155 x 233 x 19 mm
Von/Mit: Anita Graser (u. a.)
Erscheinungsdatum: 14.02.2025
Gewicht: 0,586 kg
Artikel-ID: 131412948
Über den Autor

Michael Dorman, Ph.D. is a programmer and lecturer at The Department of Environmental, Geoinformatics and Urban Planning Sciences, Ben-Gurion University of the Negev. He is working with researchers and students to develop computational workflows for spatial analysis, mostly through programming in Python, R, and JavaScript, as well as teaching those subjects.

Anita Graser, Ph.D. is a Senior Scientist at the Austrian Institute of Technology (AIT), QGIS PSC member and lead developer of MovingPandas. Anita has published several books about QGIS, including "Learning QGIS" and "QGIS Map Design", teaches Python for QGIS, and writes a popular spatial data science blog.

Jakub Nowosad, Ph.D. is an Associate Professor at Adam Mickiewicz University in Poznä and a visiting scientist at the University of Münster. Specializing in spatial pattern analysis in environmental studies, he combines research with a dedication to education and open science principles. Dr. Nowosad is committed to developing scientific software and fostering accessible knowledge through teaching and open-source contributions.

Robin Lovelace, Ph.D. is a Professor of Transport Data Science at the University of Leeds., He is the developer of high impact applications for more data-driven transport planning and policy. He has a decade's experience researching and teaching data science with geographic data and has developed numerous tools to support more data-driven policies, including the award-winning Propensity to Cycle Tool which has transformed the practice of strategic active travel network planning in the UK.

Inhaltsverzeichnis

Preface 1. Geographic data in Python 2. Attribute data operations 3. Spatial data operations 4. Geometry operations 5. Raster-vector interactions 6. Reprojecting geographic data 7. Geographic data I/O 8. Making maps with Python References

Details
Erscheinungsjahr: 2025
Fachbereich: Grundlagen (Methodik & Statistik)
Genre: Importe, Psychologie
Rubrik: Geisteswissenschaften
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9781032460659
ISBN-10: 1032460652
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Graser, Anita
Nowosad, Jakub
Dorman, Michael
Lovelace, Robin
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 155 x 233 x 19 mm
Von/Mit: Anita Graser (u. a.)
Erscheinungsdatum: 14.02.2025
Gewicht: 0,586 kg
Artikel-ID: 131412948
Sicherheitshinweis