Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Generalized Additive Models for Location, Scale and Shape
A Distributional Regression Approach, with Applications
Buch von Andreas Mayr (u. a.)
Sprache: Englisch

76,30 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
"This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields"--
"This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields"--
Über den Autor
Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.
Inhaltsverzeichnis
Preface; Notation and Termanology; Part I. Introduction and Basics: 1. Distributional Regression Models; 2. Distributions; 3. Additive Model Terms; Part II. Statistical Inference in GAMLSS: 4. Inferential Methods; 5. Penalized Maximum Likelihood Inference; 6. Bayesian Inference; 7. Statistical Boosting for GAMLSS; Part. III Applications and Case Studies: 8. Fetal Ultrasound; 9. Speech Intelligibility Testing; 10. Social Media Post Performance; 11. Childhood Undernutrition in India; 12. Socioeconomic Determinants of Federal Election Outcomes in Germany; 13. Variable Selection for Gene Expression Data; Appendix A. Continuous Distributions; Appendix B. Discrete Distributions; Bibliography; Index.
Details
Erscheinungsjahr: 2024
Fachbereich: Kommunikationswissenschaften
Genre: Importe, Medienwissenschaften
Rubrik: Wissenschaften
Medium: Buch
ISBN-13: 9781009410069
ISBN-10: 1009410067
Sprache: Englisch
Einband: Gebunden
Autor: Mayr, Andreas
Heller, Gillian Z.
Stasinopoulos, Mikis D.
Klein, Nadja
Kneib, Thomas
Hersteller: Cambridge University Press
Maße: 259 x 186 x 26 mm
Von/Mit: Andreas Mayr (u. a.)
Erscheinungsdatum: 29.02.2024
Gewicht: 0,76 kg
Artikel-ID: 127788998
Über den Autor
Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.
Inhaltsverzeichnis
Preface; Notation and Termanology; Part I. Introduction and Basics: 1. Distributional Regression Models; 2. Distributions; 3. Additive Model Terms; Part II. Statistical Inference in GAMLSS: 4. Inferential Methods; 5. Penalized Maximum Likelihood Inference; 6. Bayesian Inference; 7. Statistical Boosting for GAMLSS; Part. III Applications and Case Studies: 8. Fetal Ultrasound; 9. Speech Intelligibility Testing; 10. Social Media Post Performance; 11. Childhood Undernutrition in India; 12. Socioeconomic Determinants of Federal Election Outcomes in Germany; 13. Variable Selection for Gene Expression Data; Appendix A. Continuous Distributions; Appendix B. Discrete Distributions; Bibliography; Index.
Details
Erscheinungsjahr: 2024
Fachbereich: Kommunikationswissenschaften
Genre: Importe, Medienwissenschaften
Rubrik: Wissenschaften
Medium: Buch
ISBN-13: 9781009410069
ISBN-10: 1009410067
Sprache: Englisch
Einband: Gebunden
Autor: Mayr, Andreas
Heller, Gillian Z.
Stasinopoulos, Mikis D.
Klein, Nadja
Kneib, Thomas
Hersteller: Cambridge University Press
Maße: 259 x 186 x 26 mm
Von/Mit: Andreas Mayr (u. a.)
Erscheinungsdatum: 29.02.2024
Gewicht: 0,76 kg
Artikel-ID: 127788998
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte