Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
76,30 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Kategorien:
Beschreibung
"This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields"--
"This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields"--
Über den Autor
Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.
Inhaltsverzeichnis
Preface; Notation and Termanology; Part I. Introduction and Basics: 1. Distributional Regression Models; 2. Distributions; 3. Additive Model Terms; Part II. Statistical Inference in GAMLSS: 4. Inferential Methods; 5. Penalized Maximum Likelihood Inference; 6. Bayesian Inference; 7. Statistical Boosting for GAMLSS; Part. III Applications and Case Studies: 8. Fetal Ultrasound; 9. Speech Intelligibility Testing; 10. Social Media Post Performance; 11. Childhood Undernutrition in India; 12. Socioeconomic Determinants of Federal Election Outcomes in Germany; 13. Variable Selection for Gene Expression Data; Appendix A. Continuous Distributions; Appendix B. Discrete Distributions; Bibliography; Index.
Details
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Kommunikationswissenschaften |
Genre: | Importe, Medienwissenschaften |
Rubrik: | Wissenschaften |
Medium: | Buch |
ISBN-13: | 9781009410069 |
ISBN-10: | 1009410067 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Mayr, Andreas
Heller, Gillian Z. Stasinopoulos, Mikis D. Klein, Nadja Kneib, Thomas |
Hersteller: | Cambridge University Press |
Maße: | 259 x 186 x 26 mm |
Von/Mit: | Andreas Mayr (u. a.) |
Erscheinungsdatum: | 29.02.2024 |
Gewicht: | 0,76 kg |
Über den Autor
Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.
Inhaltsverzeichnis
Preface; Notation and Termanology; Part I. Introduction and Basics: 1. Distributional Regression Models; 2. Distributions; 3. Additive Model Terms; Part II. Statistical Inference in GAMLSS: 4. Inferential Methods; 5. Penalized Maximum Likelihood Inference; 6. Bayesian Inference; 7. Statistical Boosting for GAMLSS; Part. III Applications and Case Studies: 8. Fetal Ultrasound; 9. Speech Intelligibility Testing; 10. Social Media Post Performance; 11. Childhood Undernutrition in India; 12. Socioeconomic Determinants of Federal Election Outcomes in Germany; 13. Variable Selection for Gene Expression Data; Appendix A. Continuous Distributions; Appendix B. Discrete Distributions; Bibliography; Index.
Details
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Kommunikationswissenschaften |
Genre: | Importe, Medienwissenschaften |
Rubrik: | Wissenschaften |
Medium: | Buch |
ISBN-13: | 9781009410069 |
ISBN-10: | 1009410067 |
Sprache: | Englisch |
Einband: | Gebunden |
Autor: |
Mayr, Andreas
Heller, Gillian Z. Stasinopoulos, Mikis D. Klein, Nadja Kneib, Thomas |
Hersteller: | Cambridge University Press |
Maße: | 259 x 186 x 26 mm |
Von/Mit: | Andreas Mayr (u. a.) |
Erscheinungsdatum: | 29.02.2024 |
Gewicht: | 0,76 kg |
Warnhinweis