Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Galois Cohomology and Class Field Theory
Taschenbuch von David Harari
Sprache: Englisch

58,84 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory.
Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the ¿ebotarev density theorem.
Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory.
Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the ¿ebotarev density theorem.
Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.
Über den Autor
David Harari is a professor at the Université Paris-Sud (Orsay). He is a specialist in arithmetic and algebraic geometry, author of 40 research papers in these fields.
Zusammenfassung

First textbook offering a complete exposition of local and global class field theory as well as arithmetic duality theorems

Provides the necessary background in Galois cohomology and homological algebra

Includes an appendix on analytical methods

Inhaltsverzeichnis
Preface.- ¿Part I Group cohomology and Galois cohomology: generalities.- 1 Cohomology of finite groups.- 2 Cohomology of cyclic groups.- 3 p-groups, the Tate-Nakayama theorem.- 4 Cohomology of profinite groups.- 5 Cohomological dimension.- 6 First notions of Galois cohomology.- Part II Local fields.- 7 Basic facts about local fields.- 8 Brauer group of a local field.- 9 Local class field theory: the reciprocity law.- 10 The Tate local duality theorem.- 11 Local class field theory: Lubin-Tate theory.- Part III Global fields.- 12 Basic facts about global fields.- 13 Cohomology of the idèles.- 14 Reciprocity law.- 15 The abelianized absolute Galois group of a global field.- Part IV Duality theorems.- 16 Class formations.- 17 Poitou-Tate duality.- 18 Some applications.- Appendix.- A Some results from homological algebra.- B A survey of analytic methods.- References.- Index.
Details
Erscheinungsjahr: 2020
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiv
338 S.
48 s/w Illustr.
2 farbige Illustr.
338 p. 50 illus.
2 illus. in color.
ISBN-13: 9783030439002
ISBN-10: 3030439003
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Harari, David
Übersetzung: Yafaev, Andrei
Auflage: 1st ed. 2020
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Universitext
Maße: 235 x 155 x 20 mm
Von/Mit: David Harari
Erscheinungsdatum: 24.06.2020
Gewicht: 0,534 kg
Artikel-ID: 118023429
Über den Autor
David Harari is a professor at the Université Paris-Sud (Orsay). He is a specialist in arithmetic and algebraic geometry, author of 40 research papers in these fields.
Zusammenfassung

First textbook offering a complete exposition of local and global class field theory as well as arithmetic duality theorems

Provides the necessary background in Galois cohomology and homological algebra

Includes an appendix on analytical methods

Inhaltsverzeichnis
Preface.- ¿Part I Group cohomology and Galois cohomology: generalities.- 1 Cohomology of finite groups.- 2 Cohomology of cyclic groups.- 3 p-groups, the Tate-Nakayama theorem.- 4 Cohomology of profinite groups.- 5 Cohomological dimension.- 6 First notions of Galois cohomology.- Part II Local fields.- 7 Basic facts about local fields.- 8 Brauer group of a local field.- 9 Local class field theory: the reciprocity law.- 10 The Tate local duality theorem.- 11 Local class field theory: Lubin-Tate theory.- Part III Global fields.- 12 Basic facts about global fields.- 13 Cohomology of the idèles.- 14 Reciprocity law.- 15 The abelianized absolute Galois group of a global field.- Part IV Duality theorems.- 16 Class formations.- 17 Poitou-Tate duality.- 18 Some applications.- Appendix.- A Some results from homological algebra.- B A survey of analytic methods.- References.- Index.
Details
Erscheinungsjahr: 2020
Fachbereich: Arithmetik & Algebra
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Universitext
Inhalt: xiv
338 S.
48 s/w Illustr.
2 farbige Illustr.
338 p. 50 illus.
2 illus. in color.
ISBN-13: 9783030439002
ISBN-10: 3030439003
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Harari, David
Übersetzung: Yafaev, Andrei
Auflage: 1st ed. 2020
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Universitext
Maße: 235 x 155 x 20 mm
Von/Mit: David Harari
Erscheinungsdatum: 24.06.2020
Gewicht: 0,534 kg
Artikel-ID: 118023429
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte

19,00 €*

Aktuell nicht verfügbar