Dekorationsartikel gehören nicht zum Leistungsumfang.
Fundamentals of Materials Science and Engineering
An Integrated Approach, International Adaptation
Taschenbuch von David G. Rethwisch (u. a.)
Sprache: Englisch

59,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Fundamentals of Materials Science and Engineering provides a comprehensive coverage of the three primary types of materials (metals, ceramics, and polymers) and composites. Adopting an integrated approach to the sequence of topics, the book focuses on the relationships that exist between the structural elements of materials and their properties. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, the book presents material at an appropriate level for student comprehension.

This International Adaptation has been thoroughly updated to use SI units. This edition enhances the coverage of failure mechanism by adding new sections on Griffith theory of brittle fracture, Goodman diagram, and fatigue crack propagation rate. It further strengthens the coverage by including new sections on peritectoid and monotectic reactions, spinodal decomposition, and various hardening processes such as surface, and vacuum and plasma hardening. In addition, all homework problems requiring computations have been refreshed.
Fundamentals of Materials Science and Engineering provides a comprehensive coverage of the three primary types of materials (metals, ceramics, and polymers) and composites. Adopting an integrated approach to the sequence of topics, the book focuses on the relationships that exist between the structural elements of materials and their properties. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, the book presents material at an appropriate level for student comprehension.

This International Adaptation has been thoroughly updated to use SI units. This edition enhances the coverage of failure mechanism by adding new sections on Griffith theory of brittle fracture, Goodman diagram, and fatigue crack propagation rate. It further strengthens the coverage by including new sections on peritectoid and monotectic reactions, spinodal decomposition, and various hardening processes such as surface, and vacuum and plasma hardening. In addition, all homework problems requiring computations have been refreshed.
Inhaltsverzeichnis
List of Symbols xix

1. Introduction 1

Learning Objectives 2

1.1 Historical Perspective 2

1.2 Materials Science and Engineering: Need of Its Study 3

Case Study 1.1--Cargo Ship Failures 6

1.3 Classification of Materials 7

Case Study 1.2--Carbonated Beverage Containers 12

1.4 Advanced Materials 14

1.5 Modern Materials' Needs 17

Summary 18

References 18

Questions and Problems 19

2. Atomic Structure and Interatomic Bonding20

Learning Objectives 21

2.1 Introduction 21

Atomic Structure 21

2.2 Fundamental Concepts 21

2.3 Electrons in Atoms 24

2.4 The Periodic Table 30

Atomic Bonding in Solids 32

2.5 Bonding Forces and Energies 32

2.6 Primary Interatomic Bonds 34

2.7 Secondary Bonding or van der Waals Bonding 41

Materials of Importance 2.1--Water (Its Volume Expansion upon Freezing) 44

2.8 Mixed Bonding 45

2.9 Molecules 46

2.10 Bonding Type-Material Classification Correlations 46

Summary 47

Equation Summary 48

List of Symbols 48

Important Terms and Concepts 49

References 49

Questions and Problems 49

3. Structures of Metals and Ceramics 52

Learning Objectives 53

3.1 Introduction 53

Crystal Structures 54

3.2 Fundamental Concepts 54

3.3 Unit Cells 55

3.4 Metallic Crystal Structures 55

3.5 Density Computations--Metals 61

3.6 Ceramic Crystal Structures 62

3.7 Density Computations--Ceramics 69

3.8 Silicate Ceramics 70

3.9 Carbon 73

3.10 Polymorphism and Allotropy 78

3.11 Crystal Systems 78

Material of Importance 3.1--Tin (Its Allotropic Transformation) 80

Crystallographic Points, Directions, and Planes 81

3.12 Point Coordinates 81

3.13 Crystallographic Directions 83

3.14 Crystallographic Planes 90

3.15 Linear and Planar Densities 96

3.16 Close-Packed Crystal Structures 97

Crystalline and Noncrystalline Materials 100

3.17 Single Crystals 100

3.18 Polycrystalline Materials 101

3.19 Anisotropy 101

3.20 X-Ray Diffraction: Determination of Crystal Structures 103

3.21 Noncrystalline Solids 108

Summary 110

Equation Summary 112

List of Symbols 113

Important Terms and Concepts 114

References 114

Questions and Problems 114

4. Polymer Structures 123

Learning Objectives 124

4.1 Introduction 124

4.2 Hydrocarbon Molecules 124

4.3 Polymer Molecules 127

4.4 The Chemistry of Polymer Molecules 127

4.5 Molecular Weight 131

4.6 Molecular Shape 135

4.7 Molecular Structure 137

4.8 Molecular Configurations 138

4.9 Thermoplastic and Thermosetting Polymers 141

4.10 Copolymers 142

4.11 Polymer Crystallinity 143

4.12 Polymer Crystals 147

Summary 149

Equation Summary 150

List of Symbols 151

Important Terms and Concepts 151

References 151

Questions and Problems 152

5. Composites 155

Learning Objectives 156

5.1 Introduction 156

Particle-Reinforced Composites 158

5.2 Large-Particle Composites 159

5.3 Dispersion-Strengthened Composites 162

Fiber-Reinforced Composites 163

5.4 Influence of Fiber Length 163

5.5 Influence of Fiber Orientation and Concentration 164

5.6 The Fiber Phase 173

5.7 The Matrix Phase 174

5.8 Polymer-Matrix Composites 175

5.9 Metal-Matrix Composites 180

5.10 Ceramic-Matrix Composites 182

5.11 Carbon-Carbon Composites 183

5.12 Hybrid Composites 184

5.13 Processing of Fiber-Reinforced Composites 184

Structural Composites 188

5.14 Laminar Composites 188

5.15 Sandwich Panels 190

Case Study 5.1--Use of Composites in the Boeing 787 Dreamliner 192

5.16 Nanocomposites 193

Summary 195

Equation Summary 198

List of Symbols 199

Important Terms and Concepts 199

References 199

Questions and Problems 200

6. Imperfections in Solids 204

Learning Objectives 205

6.1 Introduction 205

Point Defects 206

6.2 Point Defects in Metals 206

6.3 Point Defects in Ceramics 207

6.4 Impurities in Solids 210

6.5 Point Defects in Polymers 215

6.6 Specification of Composition 215

Miscellaneous Imperfections 219

6.7 Dislocations--Linear Defects 219

6.8 Interfacial Defects 222

Materials of Importance 6.1--Catalysts (and Surface Defects) 225

6.9 Bulk or Volume Defects 226

6.10 Atomic Vibrations 226

Microscopic Examination 227

6.11 Basic Concepts of Microscopy 227

6.12 Microscopic Techniques 228

6.13 Grain-Size Determination 232

Summary 235

Equation Summary 237

List of Symbols 237

Important Terms and Concepts 238

References 238

Questions and Problems 238

7. Diffusion 243

Learning Objectives 244

7.1 Introduction 244

7.2 Diffusion Mechanisms 245

7.3 Fick's First Law 246

7.4 Fick's Second Law--Nonsteady-State Diffusion 248

7.5 Factors that Influence Diffusion 252

7.6 Diffusion in Semiconducting Materials 258

Materials of Importance 7.1--Aluminum for Integrated Circuit Interconnects 261

7.7 Other Diffusion Paths 262

7.8 Diffusion in Ionic and Polymeric Materials 262

Summary 264

Equation Summary 266

List of Symbols 266

Important Terms and Concepts 266

References 267

Questions and Problems 267

8. Mechanical Properties 272

Learning Objectives 273

8.1 Introduction 273

8.2 Concepts of Stress and Strain 274

Elastic Deformation 278

8.3 Stress-Strain Behavior 278

8.4 Anelasticity 281

8.5 Elastic Properties of Materials 282

Mechanical Behavior--Metals 284

8.6 Tensile Properties 285

8.7 True Stress and Strain 292

8.8 Elastic Recovery after Plastic Deformation 295

8.9 Compressive, Shear, and Torsional Deformations 295

Mechanical Behavior--Ceramics 296

8.10 Flexural Strength 296

8.11 Elastic Behavior 297

8.12 Influence of Porosity on the Mechanical Properties of Ceramics 297

Mechanical Behavior--Polymers 299

8.13 Stress-Strain Behavior 299

8.14 Macroscopic Deformation 301

8.15 Viscoelastic Deformation 302

Hardness and Other Mechanical Property Considerations 306

8.16 Hardness 306

8.17 Hardness of Ceramic Materials 307

8.18 Tear Strength and Hardness of Polymers 312

8.19 Hardness at Elevated Temperature 313

Property Variability and Design/Safety Factors 313

8.20 Variability of Material Properties 313

8.21 Design/Safety Factors 315

Summary 319

Equation Summary 322

List of Symbols 323

Important Terms and Concepts 324

References 324

Questions and Problems 324

9. Dislocation, Deformation, and Strengthening Mechanisms 333

Learning Objectives 334

9.1 Introduction 334

Deformation Mechanisms for Metals 334

9.2 Historical 335

9.3 Basic Concepts of Dislocations 335

9.4 Characteristics of Dislocations 337

9.5 Slip Systems 338

9.6 Slip in Single Crystals 340

9.7 Plastic Deformation of Polycrystalline Metals 343

9.8 Deformation by Twinning 345

Mechanisms of Strengthening in Metals 346

9.9 Strengthening by Grain Size Reduction 346

9.10 Solid-Solution Strengthening 348

9.11 Strain Hardening 349

Recovery, Recrystallization, and Grain Growth 352

9.12 Recovery 352

9.13 Recrystallization 353

9.14 Grain Growth 357

Deformation Mechanisms for Ceramic Materials 359

9.15 Crystalline Ceramics 359

9.16 Noncrystalline Ceramics 359

Mechanisms of Deformation and for Strengthening of Polymers 360

9.17 Deformation of Semicrystalline Polymers 360

9.18 Factors that Influence the Mechanical Properties of Semicrystalline Polymers 362

Materials of Importance 9.1--Shrink-Wrap Polymer Films 365

9.19 Deformation of Elastomers 366

Summary 368

Equation Summary 371

List of Symbols 371

Important Terms and Concepts 371

References 372

Questions and Problems 372

10. Failure 378

Learning Objectives 379

10.1 Introduction 379

Fracture 380

10.2 Fundamentals of Fracture 380

10.3 Ductile Fracture 380

10.4 Brittle Fracture 382

10.5 Principles of Fracture Mechanics 384

10.6 Griffith Theory of Brittle Fracture 394

10.7 Brittle Fracture of Ceramics 395

10.8 Fracture of Polymers 399

10.9 Fracture Toughness Testing 401

Fatigue 405

10.10 Cyclic Stresses 406

10.11 The S-N Curve 407

10.12 Fatigue in Polymeric Materials 412

10.13 Crack Initiation and Propagation 413

10.14 Factors that Affect Fatigue Life 415

10.15 Thermal and Corrosion Fatigue 417

10.16 Goodman Diagram 418

10.17 Fatigue Crack Propagation Rate 420

Creep 423

10.18 Mechanical Behavior Dependent on Time 423

10.19 Stress and Temperature Effects 424

10.20 Data Extrapolation Methods 427

10.21 High-Temperature Material 428

10.22 Creep in Ceramic and Polymeric Materials 429

Summary 429

Equation Summary 432

List of Symbols 433

Important Terms and Concepts 434

References 434

Questions and Problems 434

11. Phase Diagrams 441

Learning Objectives 442

11.1 Introduction 442

Definitions and Basic Concepts 442

11.2 Solubility Limit 443

11.3 Phases 444

11.4 Microstructure 444

11.5 Phase Equilibria 444

11.6 One-Component (or Unary) Phase Diagrams 445

Binary Phase Diagrams 446

11.7 Binary Isomorphous Systems 447

11.8 Interpretation of Phase Diagrams 449

11.9 Development of Microstructure in Isomorphous Alloys 453

11.10 Mechanical Properties of Isomorphous Alloys 456

11.11 Binary Eutectic Systems 456

11.12 Development of Microstructure in Eutectic Alloys 462

Materials of Importance 11.1--Lead-Free Solders 463

11.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 469

11.14 Eutectoid and Peritectic Reactions 472

11.15 Peritectoid and Monotectic Reactions 473

11.16 Congruent Phase Transformations 475

11.17 Ceramic Phase Diagrams 476

11.18 Ternary Phase Diagrams 479

11.19 The Gibbs Phase Rule 480

The Iron-Carbon System 482

11.20 The Iron-Iron Carbide (Fe-Fe 3 C) Phase Diagram 482

11.21 Development of Microstructure in Iron- Carbon Alloys 485

11.22 The Influence of Other Alloying Elements 492

11.23 Spinodal Decomposition 493

Summary 496

Equation Summary 498

List of Symbols 499

Important Terms and Concepts 499

References 500

Questions and Problems 500

12. Phase Transformations 507

Learning Objectives 508

12.1 Introduction 508

Phase Transformations in Metals 508

12.2 Basic Concepts 509

12.3 The Thermodynamics and Kinetics of Phase Transformations 509

12.4 Metastable Versus Equilibrium States 520

Microstructural and Property Changes in Iron-Carbon Alloys 521

12.5 Isothermal Transformation Diagrams...
Details
Erscheinungsjahr: 2022
Fachbereich: Fertigungstechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Seiten: 992
Inhalt: 992 S.
ISBN-13: 9781119820543
ISBN-10: 1119820545
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Rethwisch, David G.
Callister, William D.
Hersteller: John Wiley & Sons Inc
Maße: 252 x 207 x 37 mm
Von/Mit: David G. Rethwisch (u. a.)
Erscheinungsdatum: 14.07.2022
Gewicht: 1,684 kg
preigu-id: 121293909
Inhaltsverzeichnis
List of Symbols xix

1. Introduction 1

Learning Objectives 2

1.1 Historical Perspective 2

1.2 Materials Science and Engineering: Need of Its Study 3

Case Study 1.1--Cargo Ship Failures 6

1.3 Classification of Materials 7

Case Study 1.2--Carbonated Beverage Containers 12

1.4 Advanced Materials 14

1.5 Modern Materials' Needs 17

Summary 18

References 18

Questions and Problems 19

2. Atomic Structure and Interatomic Bonding20

Learning Objectives 21

2.1 Introduction 21

Atomic Structure 21

2.2 Fundamental Concepts 21

2.3 Electrons in Atoms 24

2.4 The Periodic Table 30

Atomic Bonding in Solids 32

2.5 Bonding Forces and Energies 32

2.6 Primary Interatomic Bonds 34

2.7 Secondary Bonding or van der Waals Bonding 41

Materials of Importance 2.1--Water (Its Volume Expansion upon Freezing) 44

2.8 Mixed Bonding 45

2.9 Molecules 46

2.10 Bonding Type-Material Classification Correlations 46

Summary 47

Equation Summary 48

List of Symbols 48

Important Terms and Concepts 49

References 49

Questions and Problems 49

3. Structures of Metals and Ceramics 52

Learning Objectives 53

3.1 Introduction 53

Crystal Structures 54

3.2 Fundamental Concepts 54

3.3 Unit Cells 55

3.4 Metallic Crystal Structures 55

3.5 Density Computations--Metals 61

3.6 Ceramic Crystal Structures 62

3.7 Density Computations--Ceramics 69

3.8 Silicate Ceramics 70

3.9 Carbon 73

3.10 Polymorphism and Allotropy 78

3.11 Crystal Systems 78

Material of Importance 3.1--Tin (Its Allotropic Transformation) 80

Crystallographic Points, Directions, and Planes 81

3.12 Point Coordinates 81

3.13 Crystallographic Directions 83

3.14 Crystallographic Planes 90

3.15 Linear and Planar Densities 96

3.16 Close-Packed Crystal Structures 97

Crystalline and Noncrystalline Materials 100

3.17 Single Crystals 100

3.18 Polycrystalline Materials 101

3.19 Anisotropy 101

3.20 X-Ray Diffraction: Determination of Crystal Structures 103

3.21 Noncrystalline Solids 108

Summary 110

Equation Summary 112

List of Symbols 113

Important Terms and Concepts 114

References 114

Questions and Problems 114

4. Polymer Structures 123

Learning Objectives 124

4.1 Introduction 124

4.2 Hydrocarbon Molecules 124

4.3 Polymer Molecules 127

4.4 The Chemistry of Polymer Molecules 127

4.5 Molecular Weight 131

4.6 Molecular Shape 135

4.7 Molecular Structure 137

4.8 Molecular Configurations 138

4.9 Thermoplastic and Thermosetting Polymers 141

4.10 Copolymers 142

4.11 Polymer Crystallinity 143

4.12 Polymer Crystals 147

Summary 149

Equation Summary 150

List of Symbols 151

Important Terms and Concepts 151

References 151

Questions and Problems 152

5. Composites 155

Learning Objectives 156

5.1 Introduction 156

Particle-Reinforced Composites 158

5.2 Large-Particle Composites 159

5.3 Dispersion-Strengthened Composites 162

Fiber-Reinforced Composites 163

5.4 Influence of Fiber Length 163

5.5 Influence of Fiber Orientation and Concentration 164

5.6 The Fiber Phase 173

5.7 The Matrix Phase 174

5.8 Polymer-Matrix Composites 175

5.9 Metal-Matrix Composites 180

5.10 Ceramic-Matrix Composites 182

5.11 Carbon-Carbon Composites 183

5.12 Hybrid Composites 184

5.13 Processing of Fiber-Reinforced Composites 184

Structural Composites 188

5.14 Laminar Composites 188

5.15 Sandwich Panels 190

Case Study 5.1--Use of Composites in the Boeing 787 Dreamliner 192

5.16 Nanocomposites 193

Summary 195

Equation Summary 198

List of Symbols 199

Important Terms and Concepts 199

References 199

Questions and Problems 200

6. Imperfections in Solids 204

Learning Objectives 205

6.1 Introduction 205

Point Defects 206

6.2 Point Defects in Metals 206

6.3 Point Defects in Ceramics 207

6.4 Impurities in Solids 210

6.5 Point Defects in Polymers 215

6.6 Specification of Composition 215

Miscellaneous Imperfections 219

6.7 Dislocations--Linear Defects 219

6.8 Interfacial Defects 222

Materials of Importance 6.1--Catalysts (and Surface Defects) 225

6.9 Bulk or Volume Defects 226

6.10 Atomic Vibrations 226

Microscopic Examination 227

6.11 Basic Concepts of Microscopy 227

6.12 Microscopic Techniques 228

6.13 Grain-Size Determination 232

Summary 235

Equation Summary 237

List of Symbols 237

Important Terms and Concepts 238

References 238

Questions and Problems 238

7. Diffusion 243

Learning Objectives 244

7.1 Introduction 244

7.2 Diffusion Mechanisms 245

7.3 Fick's First Law 246

7.4 Fick's Second Law--Nonsteady-State Diffusion 248

7.5 Factors that Influence Diffusion 252

7.6 Diffusion in Semiconducting Materials 258

Materials of Importance 7.1--Aluminum for Integrated Circuit Interconnects 261

7.7 Other Diffusion Paths 262

7.8 Diffusion in Ionic and Polymeric Materials 262

Summary 264

Equation Summary 266

List of Symbols 266

Important Terms and Concepts 266

References 267

Questions and Problems 267

8. Mechanical Properties 272

Learning Objectives 273

8.1 Introduction 273

8.2 Concepts of Stress and Strain 274

Elastic Deformation 278

8.3 Stress-Strain Behavior 278

8.4 Anelasticity 281

8.5 Elastic Properties of Materials 282

Mechanical Behavior--Metals 284

8.6 Tensile Properties 285

8.7 True Stress and Strain 292

8.8 Elastic Recovery after Plastic Deformation 295

8.9 Compressive, Shear, and Torsional Deformations 295

Mechanical Behavior--Ceramics 296

8.10 Flexural Strength 296

8.11 Elastic Behavior 297

8.12 Influence of Porosity on the Mechanical Properties of Ceramics 297

Mechanical Behavior--Polymers 299

8.13 Stress-Strain Behavior 299

8.14 Macroscopic Deformation 301

8.15 Viscoelastic Deformation 302

Hardness and Other Mechanical Property Considerations 306

8.16 Hardness 306

8.17 Hardness of Ceramic Materials 307

8.18 Tear Strength and Hardness of Polymers 312

8.19 Hardness at Elevated Temperature 313

Property Variability and Design/Safety Factors 313

8.20 Variability of Material Properties 313

8.21 Design/Safety Factors 315

Summary 319

Equation Summary 322

List of Symbols 323

Important Terms and Concepts 324

References 324

Questions and Problems 324

9. Dislocation, Deformation, and Strengthening Mechanisms 333

Learning Objectives 334

9.1 Introduction 334

Deformation Mechanisms for Metals 334

9.2 Historical 335

9.3 Basic Concepts of Dislocations 335

9.4 Characteristics of Dislocations 337

9.5 Slip Systems 338

9.6 Slip in Single Crystals 340

9.7 Plastic Deformation of Polycrystalline Metals 343

9.8 Deformation by Twinning 345

Mechanisms of Strengthening in Metals 346

9.9 Strengthening by Grain Size Reduction 346

9.10 Solid-Solution Strengthening 348

9.11 Strain Hardening 349

Recovery, Recrystallization, and Grain Growth 352

9.12 Recovery 352

9.13 Recrystallization 353

9.14 Grain Growth 357

Deformation Mechanisms for Ceramic Materials 359

9.15 Crystalline Ceramics 359

9.16 Noncrystalline Ceramics 359

Mechanisms of Deformation and for Strengthening of Polymers 360

9.17 Deformation of Semicrystalline Polymers 360

9.18 Factors that Influence the Mechanical Properties of Semicrystalline Polymers 362

Materials of Importance 9.1--Shrink-Wrap Polymer Films 365

9.19 Deformation of Elastomers 366

Summary 368

Equation Summary 371

List of Symbols 371

Important Terms and Concepts 371

References 372

Questions and Problems 372

10. Failure 378

Learning Objectives 379

10.1 Introduction 379

Fracture 380

10.2 Fundamentals of Fracture 380

10.3 Ductile Fracture 380

10.4 Brittle Fracture 382

10.5 Principles of Fracture Mechanics 384

10.6 Griffith Theory of Brittle Fracture 394

10.7 Brittle Fracture of Ceramics 395

10.8 Fracture of Polymers 399

10.9 Fracture Toughness Testing 401

Fatigue 405

10.10 Cyclic Stresses 406

10.11 The S-N Curve 407

10.12 Fatigue in Polymeric Materials 412

10.13 Crack Initiation and Propagation 413

10.14 Factors that Affect Fatigue Life 415

10.15 Thermal and Corrosion Fatigue 417

10.16 Goodman Diagram 418

10.17 Fatigue Crack Propagation Rate 420

Creep 423

10.18 Mechanical Behavior Dependent on Time 423

10.19 Stress and Temperature Effects 424

10.20 Data Extrapolation Methods 427

10.21 High-Temperature Material 428

10.22 Creep in Ceramic and Polymeric Materials 429

Summary 429

Equation Summary 432

List of Symbols 433

Important Terms and Concepts 434

References 434

Questions and Problems 434

11. Phase Diagrams 441

Learning Objectives 442

11.1 Introduction 442

Definitions and Basic Concepts 442

11.2 Solubility Limit 443

11.3 Phases 444

11.4 Microstructure 444

11.5 Phase Equilibria 444

11.6 One-Component (or Unary) Phase Diagrams 445

Binary Phase Diagrams 446

11.7 Binary Isomorphous Systems 447

11.8 Interpretation of Phase Diagrams 449

11.9 Development of Microstructure in Isomorphous Alloys 453

11.10 Mechanical Properties of Isomorphous Alloys 456

11.11 Binary Eutectic Systems 456

11.12 Development of Microstructure in Eutectic Alloys 462

Materials of Importance 11.1--Lead-Free Solders 463

11.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 469

11.14 Eutectoid and Peritectic Reactions 472

11.15 Peritectoid and Monotectic Reactions 473

11.16 Congruent Phase Transformations 475

11.17 Ceramic Phase Diagrams 476

11.18 Ternary Phase Diagrams 479

11.19 The Gibbs Phase Rule 480

The Iron-Carbon System 482

11.20 The Iron-Iron Carbide (Fe-Fe 3 C) Phase Diagram 482

11.21 Development of Microstructure in Iron- Carbon Alloys 485

11.22 The Influence of Other Alloying Elements 492

11.23 Spinodal Decomposition 493

Summary 496

Equation Summary 498

List of Symbols 499

Important Terms and Concepts 499

References 500

Questions and Problems 500

12. Phase Transformations 507

Learning Objectives 508

12.1 Introduction 508

Phase Transformations in Metals 508

12.2 Basic Concepts 509

12.3 The Thermodynamics and Kinetics of Phase Transformations 509

12.4 Metastable Versus Equilibrium States 520

Microstructural and Property Changes in Iron-Carbon Alloys 521

12.5 Isothermal Transformation Diagrams...
Details
Erscheinungsjahr: 2022
Fachbereich: Fertigungstechnik
Genre: Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Seiten: 992
Inhalt: 992 S.
ISBN-13: 9781119820543
ISBN-10: 1119820545
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Rethwisch, David G.
Callister, William D.
Hersteller: John Wiley & Sons Inc
Maße: 252 x 207 x 37 mm
Von/Mit: David G. Rethwisch (u. a.)
Erscheinungsdatum: 14.07.2022
Gewicht: 1,684 kg
preigu-id: 121293909
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte