69,45 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
This International Adaptation has been thoroughly updated to use SI units. This edition enhances the coverage of failure mechanism by adding new sections on Griffith theory of brittle fracture, Goodman diagram, and fatigue crack propagation rate. It further strengthens the coverage by including new sections on peritectoid and monotectic reactions, spinodal decomposition, and various hardening processes such as surface, and vacuum and plasma hardening. In addition, all homework problems requiring computations have been refreshed.
This International Adaptation has been thoroughly updated to use SI units. This edition enhances the coverage of failure mechanism by adding new sections on Griffith theory of brittle fracture, Goodman diagram, and fatigue crack propagation rate. It further strengthens the coverage by including new sections on peritectoid and monotectic reactions, spinodal decomposition, and various hardening processes such as surface, and vacuum and plasma hardening. In addition, all homework problems requiring computations have been refreshed.
List of Symbols xix
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering: Need of Its Study 3
Case Study 1.1-Cargo Ship Failures 6
1.3 Classification of Materials 7
Case Study 1.2-Carbonated Beverage Containers 12
1.4 Advanced Materials 14
1.5 Modern Materials' Needs 17
Summary 18
References 18
Questions and Problems 19
2. Atomic Structure and Interatomic Bonding20
Learning Objectives 21
2.1 Introduction 21
Atomic Structure 21
2.2 Fundamental Concepts 21
2.3 Electrons in Atoms 24
2.4 The Periodic Table 30
Atomic Bonding in Solids 32
2.5 Bonding Forces and Energies 32
2.6 Primary Interatomic Bonds 34
2.7 Secondary Bonding or van der Waals Bonding 41
Materials of Importance 2.1-Water (Its Volume Expansion upon Freezing) 44
2.8 Mixed Bonding 45
2.9 Molecules 46
2.10 Bonding Type-Material Classification Correlations 46
Summary 47
Equation Summary 48
List of Symbols 48
Important Terms and Concepts 49
References 49
Questions and Problems 49
3. Structures of Metals and Ceramics 52
Learning Objectives 53
3.1 Introduction 53
Crystal Structures 54
3.2 Fundamental Concepts 54
3.3 Unit Cells 55
3.4 Metallic Crystal Structures 55
3.5 Density Computations-Metals 61
3.6 Ceramic Crystal Structures 62
3.7 Density Computations-Ceramics 69
3.8 Silicate Ceramics 70
3.9 Carbon 73
3.10 Polymorphism and Allotropy 78
3.11 Crystal Systems 78
Material of Importance 3.1-Tin (Its Allotropic Transformation) 80
Crystallographic Points, Directions, and Planes 81
3.12 Point Coordinates 81
3.13 Crystallographic Directions 83
3.14 Crystallographic Planes 90
3.15 Linear and Planar Densities 96
3.16 Close-Packed Crystal Structures 97
Crystalline and Noncrystalline Materials 100
3.17 Single Crystals 100
3.18 Polycrystalline Materials 101
3.19 Anisotropy 101
3.20 X-Ray Diffraction: Determination of Crystal Structures 103
3.21 Noncrystalline Solids 108
Summary 110
Equation Summary 112
List of Symbols 113
Important Terms and Concepts 114
References 114
Questions and Problems 114
4. Polymer Structures 123
Learning Objectives 124
4.1 Introduction 124
4.2 Hydrocarbon Molecules 124
4.3 Polymer Molecules 127
4.4 The Chemistry of Polymer Molecules 127
4.5 Molecular Weight 131
4.6 Molecular Shape 135
4.7 Molecular Structure 137
4.8 Molecular Configurations 138
4.9 Thermoplastic and Thermosetting Polymers 141
4.10 Copolymers 142
4.11 Polymer Crystallinity 143
4.12 Polymer Crystals 147
Summary 149
Equation Summary 150
List of Symbols 151
Important Terms and Concepts 151
References 151
Questions and Problems 152
5. Composites 155
Learning Objectives 156
5.1 Introduction 156
Particle-Reinforced Composites 158
5.2 Large-Particle Composites 159
5.3 Dispersion-Strengthened Composites 162
Fiber-Reinforced Composites 163
5.4 Influence of Fiber Length 163
5.5 Influence of Fiber Orientation and Concentration 164
5.6 The Fiber Phase 173
5.7 The Matrix Phase 174
5.8 Polymer-Matrix Composites 175
5.9 Metal-Matrix Composites 180
5.10 Ceramic-Matrix Composites 182
5.11 Carbon-Carbon Composites 183
5.12 Hybrid Composites 184
5.13 Processing of Fiber-Reinforced Composites 184
Structural Composites 188
5.14 Laminar Composites 188
5.15 Sandwich Panels 190
Case Study 5.1-Use of Composites in the Boeing 787 Dreamliner 192
5.16 Nanocomposites 193
Summary 195
Equation Summary 198
List of Symbols 199
Important Terms and Concepts 199
References 199
Questions and Problems 200
6. Imperfections in Solids 204
Learning Objectives 205
6.1 Introduction 205
Point Defects 206
6.2 Point Defects in Metals 206
6.3 Point Defects in Ceramics 207
6.4 Impurities in Solids 210
6.5 Point Defects in Polymers 215
6.6 Specification of Composition 215
Miscellaneous Imperfections 219
6.7 Dislocations-Linear Defects 219
6.8 Interfacial Defects 222
Materials of Importance 6.1-Catalysts (and Surface Defects) 225
6.9 Bulk or Volume Defects 226
6.10 Atomic Vibrations 226
Microscopic Examination 227
6.11 Basic Concepts of Microscopy 227
6.12 Microscopic Techniques 228
6.13 Grain-Size Determination 232
Summary 235
Equation Summary 237
List of Symbols 237
Important Terms and Concepts 238
References 238
Questions and Problems 238
7. Diffusion 243
Learning Objectives 244
7.1 Introduction 244
7.2 Diffusion Mechanisms 245
7.3 Fick's First Law 246
7.4 Fick's Second Law-Nonsteady-State Diffusion 248
7.5 Factors that Influence Diffusion 252
7.6 Diffusion in Semiconducting Materials 258
Materials of Importance 7.1-Aluminum for Integrated Circuit Interconnects 261
7.7 Other Diffusion Paths 262
7.8 Diffusion in Ionic and Polymeric Materials 262
Summary 264
Equation Summary 266
List of Symbols 266
Important Terms and Concepts 266
References 267
Questions and Problems 267
8. Mechanical Properties 272
Learning Objectives 273
8.1 Introduction 273
8.2 Concepts of Stress and Strain 274
Elastic Deformation 278
8.3 Stress-Strain Behavior 278
8.4 Anelasticity 281
8.5 Elastic Properties of Materials 282
Mechanical Behavior-Metals 284
8.6 Tensile Properties 285
8.7 True Stress and Strain 292
8.8 Elastic Recovery after Plastic Deformation 295
8.9 Compressive, Shear, and Torsional Deformations 295
Mechanical Behavior-Ceramics 296
8.10 Flexural Strength 296
8.11 Elastic Behavior 297
8.12 Influence of Porosity on the Mechanical Properties of Ceramics 297
Mechanical Behavior-Polymers 299
8.13 Stress-Strain Behavior 299
8.14 Macroscopic Deformation 301
8.15 Viscoelastic Deformation 302
Hardness and Other Mechanical Property Considerations 306
8.16 Hardness 306
8.17 Hardness of Ceramic Materials 307
8.18 Tear Strength and Hardness of Polymers 312
8.19 Hardness at Elevated Temperature 313
Property Variability and Design/Safety Factors 313
8.20 Variability of Material Properties 313
8.21 Design/Safety Factors 315
Summary 319
Equation Summary 322
List of Symbols 323
Important Terms and Concepts 324
References 324
Questions and Problems 324
9. Dislocation, Deformation, and Strengthening Mechanisms 333
Learning Objectives 334
9.1 Introduction 334
Deformation Mechanisms for Metals 334
9.2 Historical 335
9.3 Basic Concepts of Dislocations 335
9.4 Characteristics of Dislocations 337
9.5 Slip Systems 338
9.6 Slip in Single Crystals 340
9.7 Plastic Deformation of Polycrystalline Metals 343
9.8 Deformation by Twinning 345
Mechanisms of Strengthening in Metals 346
9.9 Strengthening by Grain Size Reduction 346
9.10 Solid-Solution Strengthening 348
9.11 Strain Hardening 349
Recovery, Recrystallization, and Grain Growth 352
9.12 Recovery 352
9.13 Recrystallization 353
9.14 Grain Growth 357
Deformation Mechanisms for Ceramic Materials 359
9.15 Crystalline Ceramics 359
9.16 Noncrystalline Ceramics 359
Mechanisms of Deformation and for Strengthening of Polymers 360
9.17 Deformation of Semicrystalline Polymers 360
9.18 Factors that Influence the Mechanical Properties of Semicrystalline Polymers 362
Materials of Importance 9.1-Shrink-Wrap Polymer Films 365
9.19 Deformation of Elastomers 366
Summary 368
Equation Summary 371
List of Symbols 371
Important Terms and Concepts 371
References 372
Questions and Problems 372
10. Failure 378
Learning Objectives 379
10.1 Introduction 379
Fracture 380
10.2 Fundamentals of Fracture 380
10.3 Ductile Fracture 380
10.4 Brittle Fracture 382
10.5 Principles of Fracture Mechanics 384
10.6 Griffith Theory of Brittle Fracture 394
10.7 Brittle Fracture of Ceramics 395
10.8 Fracture of Polymers 399
10.9 Fracture Toughness Testing 401
Fatigue 405
10.10 Cyclic Stresses 406
10.11 The S-N Curve 407
10.12 Fatigue in Polymeric Materials 412
10.13 Crack Initiation and Propagation 413
10.14 Factors that Affect Fatigue Life 415
10.15 Thermal and Corrosion Fatigue 417
10.16 Goodman Diagram 418
10.17 Fatigue Crack Propagation Rate 420
Creep 423
10.18 Mechanical Behavior Dependent on Time 423
10.19 Stress and Temperature Effects 424
10.20 Data Extrapolation Methods 427
10.21 High-Temperature Material 428
10.22 Creep in Ceramic and Polymeric Materials 429
Summary 429
Equation Summary 432
List of Symbols 433
Important Terms and Concepts 434
References 434
Questions and Problems 434
11. Phase Diagrams 441
Learning Objectives 442
...Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | 992 S. |
ISBN-13: | 9781119820543 |
ISBN-10: | 1119820545 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Rethwisch, David G.
Callister, William D. |
Hersteller: | John Wiley & Sons Inc |
Maße: | 252 x 207 x 37 mm |
Von/Mit: | David G. Rethwisch (u. a.) |
Erscheinungsdatum: | 14.07.2022 |
Gewicht: | 1,87 kg |
List of Symbols xix
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering: Need of Its Study 3
Case Study 1.1-Cargo Ship Failures 6
1.3 Classification of Materials 7
Case Study 1.2-Carbonated Beverage Containers 12
1.4 Advanced Materials 14
1.5 Modern Materials' Needs 17
Summary 18
References 18
Questions and Problems 19
2. Atomic Structure and Interatomic Bonding20
Learning Objectives 21
2.1 Introduction 21
Atomic Structure 21
2.2 Fundamental Concepts 21
2.3 Electrons in Atoms 24
2.4 The Periodic Table 30
Atomic Bonding in Solids 32
2.5 Bonding Forces and Energies 32
2.6 Primary Interatomic Bonds 34
2.7 Secondary Bonding or van der Waals Bonding 41
Materials of Importance 2.1-Water (Its Volume Expansion upon Freezing) 44
2.8 Mixed Bonding 45
2.9 Molecules 46
2.10 Bonding Type-Material Classification Correlations 46
Summary 47
Equation Summary 48
List of Symbols 48
Important Terms and Concepts 49
References 49
Questions and Problems 49
3. Structures of Metals and Ceramics 52
Learning Objectives 53
3.1 Introduction 53
Crystal Structures 54
3.2 Fundamental Concepts 54
3.3 Unit Cells 55
3.4 Metallic Crystal Structures 55
3.5 Density Computations-Metals 61
3.6 Ceramic Crystal Structures 62
3.7 Density Computations-Ceramics 69
3.8 Silicate Ceramics 70
3.9 Carbon 73
3.10 Polymorphism and Allotropy 78
3.11 Crystal Systems 78
Material of Importance 3.1-Tin (Its Allotropic Transformation) 80
Crystallographic Points, Directions, and Planes 81
3.12 Point Coordinates 81
3.13 Crystallographic Directions 83
3.14 Crystallographic Planes 90
3.15 Linear and Planar Densities 96
3.16 Close-Packed Crystal Structures 97
Crystalline and Noncrystalline Materials 100
3.17 Single Crystals 100
3.18 Polycrystalline Materials 101
3.19 Anisotropy 101
3.20 X-Ray Diffraction: Determination of Crystal Structures 103
3.21 Noncrystalline Solids 108
Summary 110
Equation Summary 112
List of Symbols 113
Important Terms and Concepts 114
References 114
Questions and Problems 114
4. Polymer Structures 123
Learning Objectives 124
4.1 Introduction 124
4.2 Hydrocarbon Molecules 124
4.3 Polymer Molecules 127
4.4 The Chemistry of Polymer Molecules 127
4.5 Molecular Weight 131
4.6 Molecular Shape 135
4.7 Molecular Structure 137
4.8 Molecular Configurations 138
4.9 Thermoplastic and Thermosetting Polymers 141
4.10 Copolymers 142
4.11 Polymer Crystallinity 143
4.12 Polymer Crystals 147
Summary 149
Equation Summary 150
List of Symbols 151
Important Terms and Concepts 151
References 151
Questions and Problems 152
5. Composites 155
Learning Objectives 156
5.1 Introduction 156
Particle-Reinforced Composites 158
5.2 Large-Particle Composites 159
5.3 Dispersion-Strengthened Composites 162
Fiber-Reinforced Composites 163
5.4 Influence of Fiber Length 163
5.5 Influence of Fiber Orientation and Concentration 164
5.6 The Fiber Phase 173
5.7 The Matrix Phase 174
5.8 Polymer-Matrix Composites 175
5.9 Metal-Matrix Composites 180
5.10 Ceramic-Matrix Composites 182
5.11 Carbon-Carbon Composites 183
5.12 Hybrid Composites 184
5.13 Processing of Fiber-Reinforced Composites 184
Structural Composites 188
5.14 Laminar Composites 188
5.15 Sandwich Panels 190
Case Study 5.1-Use of Composites in the Boeing 787 Dreamliner 192
5.16 Nanocomposites 193
Summary 195
Equation Summary 198
List of Symbols 199
Important Terms and Concepts 199
References 199
Questions and Problems 200
6. Imperfections in Solids 204
Learning Objectives 205
6.1 Introduction 205
Point Defects 206
6.2 Point Defects in Metals 206
6.3 Point Defects in Ceramics 207
6.4 Impurities in Solids 210
6.5 Point Defects in Polymers 215
6.6 Specification of Composition 215
Miscellaneous Imperfections 219
6.7 Dislocations-Linear Defects 219
6.8 Interfacial Defects 222
Materials of Importance 6.1-Catalysts (and Surface Defects) 225
6.9 Bulk or Volume Defects 226
6.10 Atomic Vibrations 226
Microscopic Examination 227
6.11 Basic Concepts of Microscopy 227
6.12 Microscopic Techniques 228
6.13 Grain-Size Determination 232
Summary 235
Equation Summary 237
List of Symbols 237
Important Terms and Concepts 238
References 238
Questions and Problems 238
7. Diffusion 243
Learning Objectives 244
7.1 Introduction 244
7.2 Diffusion Mechanisms 245
7.3 Fick's First Law 246
7.4 Fick's Second Law-Nonsteady-State Diffusion 248
7.5 Factors that Influence Diffusion 252
7.6 Diffusion in Semiconducting Materials 258
Materials of Importance 7.1-Aluminum for Integrated Circuit Interconnects 261
7.7 Other Diffusion Paths 262
7.8 Diffusion in Ionic and Polymeric Materials 262
Summary 264
Equation Summary 266
List of Symbols 266
Important Terms and Concepts 266
References 267
Questions and Problems 267
8. Mechanical Properties 272
Learning Objectives 273
8.1 Introduction 273
8.2 Concepts of Stress and Strain 274
Elastic Deformation 278
8.3 Stress-Strain Behavior 278
8.4 Anelasticity 281
8.5 Elastic Properties of Materials 282
Mechanical Behavior-Metals 284
8.6 Tensile Properties 285
8.7 True Stress and Strain 292
8.8 Elastic Recovery after Plastic Deformation 295
8.9 Compressive, Shear, and Torsional Deformations 295
Mechanical Behavior-Ceramics 296
8.10 Flexural Strength 296
8.11 Elastic Behavior 297
8.12 Influence of Porosity on the Mechanical Properties of Ceramics 297
Mechanical Behavior-Polymers 299
8.13 Stress-Strain Behavior 299
8.14 Macroscopic Deformation 301
8.15 Viscoelastic Deformation 302
Hardness and Other Mechanical Property Considerations 306
8.16 Hardness 306
8.17 Hardness of Ceramic Materials 307
8.18 Tear Strength and Hardness of Polymers 312
8.19 Hardness at Elevated Temperature 313
Property Variability and Design/Safety Factors 313
8.20 Variability of Material Properties 313
8.21 Design/Safety Factors 315
Summary 319
Equation Summary 322
List of Symbols 323
Important Terms and Concepts 324
References 324
Questions and Problems 324
9. Dislocation, Deformation, and Strengthening Mechanisms 333
Learning Objectives 334
9.1 Introduction 334
Deformation Mechanisms for Metals 334
9.2 Historical 335
9.3 Basic Concepts of Dislocations 335
9.4 Characteristics of Dislocations 337
9.5 Slip Systems 338
9.6 Slip in Single Crystals 340
9.7 Plastic Deformation of Polycrystalline Metals 343
9.8 Deformation by Twinning 345
Mechanisms of Strengthening in Metals 346
9.9 Strengthening by Grain Size Reduction 346
9.10 Solid-Solution Strengthening 348
9.11 Strain Hardening 349
Recovery, Recrystallization, and Grain Growth 352
9.12 Recovery 352
9.13 Recrystallization 353
9.14 Grain Growth 357
Deformation Mechanisms for Ceramic Materials 359
9.15 Crystalline Ceramics 359
9.16 Noncrystalline Ceramics 359
Mechanisms of Deformation and for Strengthening of Polymers 360
9.17 Deformation of Semicrystalline Polymers 360
9.18 Factors that Influence the Mechanical Properties of Semicrystalline Polymers 362
Materials of Importance 9.1-Shrink-Wrap Polymer Films 365
9.19 Deformation of Elastomers 366
Summary 368
Equation Summary 371
List of Symbols 371
Important Terms and Concepts 371
References 372
Questions and Problems 372
10. Failure 378
Learning Objectives 379
10.1 Introduction 379
Fracture 380
10.2 Fundamentals of Fracture 380
10.3 Ductile Fracture 380
10.4 Brittle Fracture 382
10.5 Principles of Fracture Mechanics 384
10.6 Griffith Theory of Brittle Fracture 394
10.7 Brittle Fracture of Ceramics 395
10.8 Fracture of Polymers 399
10.9 Fracture Toughness Testing 401
Fatigue 405
10.10 Cyclic Stresses 406
10.11 The S-N Curve 407
10.12 Fatigue in Polymeric Materials 412
10.13 Crack Initiation and Propagation 413
10.14 Factors that Affect Fatigue Life 415
10.15 Thermal and Corrosion Fatigue 417
10.16 Goodman Diagram 418
10.17 Fatigue Crack Propagation Rate 420
Creep 423
10.18 Mechanical Behavior Dependent on Time 423
10.19 Stress and Temperature Effects 424
10.20 Data Extrapolation Methods 427
10.21 High-Temperature Material 428
10.22 Creep in Ceramic and Polymeric Materials 429
Summary 429
Equation Summary 432
List of Symbols 433
Important Terms and Concepts 434
References 434
Questions and Problems 434
11. Phase Diagrams 441
Learning Objectives 442
...Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Fertigungstechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | 992 S. |
ISBN-13: | 9781119820543 |
ISBN-10: | 1119820545 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Rethwisch, David G.
Callister, William D. |
Hersteller: | John Wiley & Sons Inc |
Maße: | 252 x 207 x 37 mm |
Von/Mit: | David G. Rethwisch (u. a.) |
Erscheinungsdatum: | 14.07.2022 |
Gewicht: | 1,87 kg |