Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Foundations of the Pricing of Financial Derivatives
Theory and Analysis
Buch von Don M. Chance (u. a.)
Sprache: Englisch

85,20 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung

Praise for FOUNDATIONS of the PRICING of FINANCIAL DERIVATIVES

"This book stands out for me in at least two important ways. First, quite incredibly, the authors have succeeded in presenting financial derivatives in a remarkably accessible user-friendly manner that integrates technical derivatives' mathematics with insightful conceptual understanding, enabling students to easily navigate the complex minefield of ideas and applications involved. Second, it combines a strong academic focus with an equivalent emphasis on addressing real-world problems across different echelons of difficulty levels."
-- PRADEEP YADAV, W. Ross Johnston Chair and Professor of Finance, University of Oklahoma

"This is a comprehensive and cleverly developed book on derivatives. It is an excellent text for advanced Master's and Ph.D. students (and for reference by professionals)."
-- JIMMY HILLIARD, Harbert Eminent Scholar and Professor of Finance, Auburn University

"The authors are great storytellers; they make derivatives come alive. The subject is obviously highly technical and intimidating at times, but they have made it so accessible, relevant and, most importantly, fun. The topics covered are comprehensive and yet very selective with all the right choices and emphasis. I wholeheartedly recommend this excellent textbook for both novice and advanced students of derivatives."
--YISONG S. TIAN, Professor of Finance, York University

Praise for FOUNDATIONS of the PRICING of FINANCIAL DERIVATIVES

"This book stands out for me in at least two important ways. First, quite incredibly, the authors have succeeded in presenting financial derivatives in a remarkably accessible user-friendly manner that integrates technical derivatives' mathematics with insightful conceptual understanding, enabling students to easily navigate the complex minefield of ideas and applications involved. Second, it combines a strong academic focus with an equivalent emphasis on addressing real-world problems across different echelons of difficulty levels."
-- PRADEEP YADAV, W. Ross Johnston Chair and Professor of Finance, University of Oklahoma

"This is a comprehensive and cleverly developed book on derivatives. It is an excellent text for advanced Master's and Ph.D. students (and for reference by professionals)."
-- JIMMY HILLIARD, Harbert Eminent Scholar and Professor of Finance, Auburn University

"The authors are great storytellers; they make derivatives come alive. The subject is obviously highly technical and intimidating at times, but they have made it so accessible, relevant and, most importantly, fun. The topics covered are comprehensive and yet very selective with all the right choices and emphasis. I wholeheartedly recommend this excellent textbook for both novice and advanced students of derivatives."
--YISONG S. TIAN, Professor of Finance, York University

Über den Autor

ROBERT E. BROOKS, PHD, CFA, is Professor Emeritus of Finance at the University of Alabama. He is the President of Financial Risk Management, LLC, a quantitative finance consulting firm. He is the author of several books and maintains a YouTube channel, [...]

DON M. CHANCE, PHD, CFA, holds the James C. Flores Endowed Chair of MBA Studies and is Professor of Finance at the E.J. Ourso College of Business at Louisiana State University. He is the author of four books on derivatives and risk management. His consulting firm is Omega Risk Advisors, LLC, and his website is [...].

Inhaltsverzeichnis

Preface xv

Chapter 1 Introduction and Overview 1

1.1 Motivation for This Book 2

1.2 What Is a Derivative? 6

1.3 Options Versus Forwards, Futures, and Swaps 8

1.4 Size and Scope of the Financial Derivatives Markets 9

1.5 Outline and Features of the Book 12

1.6 Final Thoughts and Preview 14

Questions and Problems 15

Notes 15

Part I Basic Foundations for Derivative Pricing

Chapter 2 Boundaries, Limits, and Conditions on Option Prices 19

2.1 Setup, Definitions, and Arbitrage 20

2.2 Absolute Minimum and Maximum Values 21

2.3 The Value of an American Option Relative to the Value of a European Option 22

2.4 The Value of an Option at Expiration 22

2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise 23

2.6 Differences in Option Values by Exercise Price 31

2.7 The Effect of Differences in Time to Expiration 37

2.8 The Convexity Rule 38

2.9 Put-Call Parity 40

2.10 The Effect of Interest Rates on Option Prices 47

2.11 The Effect of Volatility on Option Prices 47

2.12 The Building Blocks of European Options 48

2.13 Recap and Preview 49

Questions and Problems 50

Notes 51

Chapter 3 Elementary Review of Mathematics for Finance 53

3.1 Summation Notation 53

3.2 Product Notation 55

3.3 Logarithms and Exponentials 56

3.4 Series Formulas 58

3.5 Calculus Derivatives 59

3.6 Integration 68

3.7 Differential Equations 70

3.8 Recap and Preview 71

Questions and Problems 71

Notes 73

Chapter 4 Elementary Review of Probability for Finance 75

4.1 Marginal, Conditional, and Joint Probabilities 75

4.2 Expectations, Variances, and Covariances of Discrete Random Variables 80

4.3 Continuous Random Variables 86

4.4 Some General Results in Probability Theory 93

4.5 Technical Introduction to Common Probability Distributions Used in Finance 95

4.6 Recap and Preview 109

Questions and Problems 109

Notes 110

Chapter 5 Financial Applications of Probability Distributions 113

5.1 The Univariate Normal Probability Distribution 113

5.2 Contrasting the Normal with the Lognormal Probability Distribution 119

5.3 Bivariate Normal Probability Distribution 123

5.4 The Bivariate Lognormal Probability Distribution 125

5.5 Recap and Preview 126

Appendix 5A An Excel Routine for the Bivariate Normal Probability 126

Questions and Problems 128

Notes 128

Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives 129

6.1 Valuing Risky Assets 129

6.2 Risk-Neutral Pricing in Discrete Time 130

6.3 Identical Assets and the Law of One Price 133

6.4 Derivative Contracts 134

6.5 A First Look at Valuing Options 136

6.6 A World of Risk-Averse and Risk-Neutral Investors 137

6.7 Pricing Options Under Risk Aversion 138

6.8 Recap and Preview 138

Questions and Problems 139

Notes 139

Part II Discrete Time Derivatives Pricing Theory

Chapter 7 The Binomial Model 143

7.1 The One-Period Binomial Model for Calls 143

7.2 The One-Period Binomial Model for Puts 146

7.3 Arbitraging Price Discrepancies 149

7.4 The Multiperiod Model 151

7.5 American Options and Early Exercise in the Binomial Framework 154

7.6 Dividends and Recombination 155

7.7 Path Independence and Path Dependence 159

7.8 Recap and Preview 159

Appendix 7A Derivation of Equation (7.9) 159

Appendix 7B Pascal's Triangle and the Binomial Model 161

Questions and Problems 163

Notes 163

Chapter 8 Calculating the Greeks in the Binomial Model 165

8.1 Standard Approach 165

8.2 An Enhanced Method for Estimating Delta and Gamma 170

8.3 Numerical Examples 172

8.4 Dividends 174

8.5 Recap and Preview 175

Questions and Problems 175

Notes 176

Chapter 9 Convergence of the Binomial Model to the Black-Scholes-Merton Model 177

9.1 Setting Up the Problem 177

9.2 The Hsia Proof 181

9.3 Put Options 187

9.4 Dividends 188

9.5 Recap and Preview 188

Questions and Problems 189

Notes 190

Part III Continuous Time Derivatives Pricing Theory

Chapter 10 The Basics of Brownian Motion and Wiener Processes 193

10.1 Brownian Motion 193

10.2 The Wiener Process 195

10.3 Properties of a Model of Asset Price Fluctuations 196

10.4 Building a Model of Asset Price Fluctuations 199

10.5 Simulating Brownian Motion and Wiener Processes 202

10.6 Formal Statement of Wiener Process Properties 205

10.7 Recap and Preview 207

Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals 207

Questions and Problems 208

Notes 209

Chapter 11 Stochastic Calculus and Itô's Lemma 211

11.1 A Result from Basic Calculus 211

11.2 Introducing Stochastic Calculus and Itô's Lemma 212

11.3 Itô's Integral 215

11.4 The Integral Form of Itô's Lemma 216

11.5 Some Additional Cases of Itô's Lemma 217

11.6 Recap and Preview 219

Appendix 11A Technical Stochastic Integral Results 220
11A.1 Selected Stochastic Integral Results 220
11A.2 A General Linear Theorem 224

Questions and Problems 229

Notes 230

Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets 231

12.1 A Stochastic Process for the Asset Relative Return 232

12.2 A Stochastic Process for the Asset Price Change 235

12.3 Solving the Stochastic Differential Equation 236

12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations 237

12.5 Finding the Expected Future Asset Price 238

12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? 240

12.7 Recap and Preview 241

Questions and Problems 242

Notes 242

Chapter 13 Deriving the Black-Scholes-Merton Model 245

13.1 Derivation of the European Call Option Pricing Formula 245

13.2 The European Put Option Pricing Formula 249

13.3 Deriving the Black-Scholes-Merton Model as an Expected Value 250

13.4 Deriving the Black-Scholes-Merton Model as the Solution of a Partial Differential Equation 254

13.5 Decomposing the Black-Scholes-Merton Model into Binary Options 258

13.6 Black-Scholes-Merton Option Pricing When There Are Dividends 259

13.7 Selected Black-Scholes-Merton Model Limiting Results 259

13.8 Computing the Black-Scholes-Merton Option Pricing Model Values 262

13.9 Recap and Preview 265

Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model 265

Questions and Problems 269

Notes 270

Chapter 14 The Greeks in the Black-Scholes-Merton Model 271

14.1 Delta: The First Derivative with Respect to the Underlying Price 274

14.2 Gamma: The Second Derivative with Respect to the Underlying Price 274

14.3 Theta: The First Derivative with Respect to Time 275

14.4 Verifying the Solution of the Partial Differential Equation 275

14.5 Selected Other Partial Derivatives of the Black-Scholes-Merton Model 277

14.6 Partial Derivatives of the Black-Scholes-Merton European Put Option Pricing Model 278

14.7 Incorporating Dividends 279

14.8 Greek Sensitivities 280

14.9 Elasticities 283

14.10 Extended Greeks of the Black-Scholes-Merton Option Pricing Model 284

14.11 Recap and Preview 284

Questions and Problems 285

Notes 286

Chapter 15 Girsanov's Theorem in Option Pricing 287

15.1 The Martingale Representation Theorem 287

15.2 Introducing the Radon-Nikodym Derivative by Changing the Drift for a Single Random Variable 289

15.3 A Complete Probability Space 291

15.4 Formal Statement of Girsanov's Theorem 292

15.5 Changing the Drift in a Continuous Time Stochastic Process 293

15.6 Changing the Drift of an Asset Price Process 297

15.7 Recap and Preview 300

Questions and Problems 301

Notes 302

Chapter 16 Connecting Discrete and Continuous Brownian Motions 303

16.1 Brownian Motion in a Discrete World 303

16.2 Moving from a Discrete to a Continuous World 306

16.3 Changing the Probability Measure with the Radon-Nikodym Derivative in Discrete Time 310

16.4 The Kolmogorov Equations 313

16.5 Recap and Preview 321

Questions and Problems 322

Notes 322

Part IV Extensions and Generalizations of Derivative Pricing

Chapter 17 Applying Linear Homogeneity to Option Pricing 327

17.1 Introduction to Exchange Options 327

17.2 Homogeneous Functions 328

17.3 Euler's Rule 330

17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black-Scholes-Merton Model 330

17.5 Exchange Option Pricing 333

17.6 Spread Options 337

17.7 Forward Start Options 339

17.8 Recap and Preview 341

Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model 342

Appendix 17B Multivariate Itô's Lemma 344

Appendix 17C Greeks of the Exchange Option Model 345

Questions and Problems 347

Notes 347

Chapter 18 Compound Option Pricing 349

18.1 Equity as an Option 350

18.2 Valuing an Option on the Equity as a Compound Option 351

18.3 Compound Option...

Details
Erscheinungsjahr: 2024
Fachbereich: Betriebswirtschaft
Genre: Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Buch
Inhalt: Preface xvChapter 1 Introduction and Overview 11.1 Motivation for This Book 21.2 What Is a Derivative? 61.3 Options Versus Forwards
Futures
and Swaps 81.4 Size and Scope of the Financial Derivatives Markets 91.5 Outline and Features of the Book 121.6 F
ISBN-13: 9781394179657
ISBN-10: 1394179650
Sprache: Englisch
Einband: Gebunden
Autor: Chance, Don M.
Brooks, Robert E.
Hersteller: John Wiley & Sons Inc
Maße: 261 x 185 x 45 mm
Von/Mit: Don M. Chance (u. a.)
Erscheinungsdatum: 25.01.2024
Gewicht: 1,354 kg
Artikel-ID: 127189453
Über den Autor

ROBERT E. BROOKS, PHD, CFA, is Professor Emeritus of Finance at the University of Alabama. He is the President of Financial Risk Management, LLC, a quantitative finance consulting firm. He is the author of several books and maintains a YouTube channel, [...]

DON M. CHANCE, PHD, CFA, holds the James C. Flores Endowed Chair of MBA Studies and is Professor of Finance at the E.J. Ourso College of Business at Louisiana State University. He is the author of four books on derivatives and risk management. His consulting firm is Omega Risk Advisors, LLC, and his website is [...].

Inhaltsverzeichnis

Preface xv

Chapter 1 Introduction and Overview 1

1.1 Motivation for This Book 2

1.2 What Is a Derivative? 6

1.3 Options Versus Forwards, Futures, and Swaps 8

1.4 Size and Scope of the Financial Derivatives Markets 9

1.5 Outline and Features of the Book 12

1.6 Final Thoughts and Preview 14

Questions and Problems 15

Notes 15

Part I Basic Foundations for Derivative Pricing

Chapter 2 Boundaries, Limits, and Conditions on Option Prices 19

2.1 Setup, Definitions, and Arbitrage 20

2.2 Absolute Minimum and Maximum Values 21

2.3 The Value of an American Option Relative to the Value of a European Option 22

2.4 The Value of an Option at Expiration 22

2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise 23

2.6 Differences in Option Values by Exercise Price 31

2.7 The Effect of Differences in Time to Expiration 37

2.8 The Convexity Rule 38

2.9 Put-Call Parity 40

2.10 The Effect of Interest Rates on Option Prices 47

2.11 The Effect of Volatility on Option Prices 47

2.12 The Building Blocks of European Options 48

2.13 Recap and Preview 49

Questions and Problems 50

Notes 51

Chapter 3 Elementary Review of Mathematics for Finance 53

3.1 Summation Notation 53

3.2 Product Notation 55

3.3 Logarithms and Exponentials 56

3.4 Series Formulas 58

3.5 Calculus Derivatives 59

3.6 Integration 68

3.7 Differential Equations 70

3.8 Recap and Preview 71

Questions and Problems 71

Notes 73

Chapter 4 Elementary Review of Probability for Finance 75

4.1 Marginal, Conditional, and Joint Probabilities 75

4.2 Expectations, Variances, and Covariances of Discrete Random Variables 80

4.3 Continuous Random Variables 86

4.4 Some General Results in Probability Theory 93

4.5 Technical Introduction to Common Probability Distributions Used in Finance 95

4.6 Recap and Preview 109

Questions and Problems 109

Notes 110

Chapter 5 Financial Applications of Probability Distributions 113

5.1 The Univariate Normal Probability Distribution 113

5.2 Contrasting the Normal with the Lognormal Probability Distribution 119

5.3 Bivariate Normal Probability Distribution 123

5.4 The Bivariate Lognormal Probability Distribution 125

5.5 Recap and Preview 126

Appendix 5A An Excel Routine for the Bivariate Normal Probability 126

Questions and Problems 128

Notes 128

Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives 129

6.1 Valuing Risky Assets 129

6.2 Risk-Neutral Pricing in Discrete Time 130

6.3 Identical Assets and the Law of One Price 133

6.4 Derivative Contracts 134

6.5 A First Look at Valuing Options 136

6.6 A World of Risk-Averse and Risk-Neutral Investors 137

6.7 Pricing Options Under Risk Aversion 138

6.8 Recap and Preview 138

Questions and Problems 139

Notes 139

Part II Discrete Time Derivatives Pricing Theory

Chapter 7 The Binomial Model 143

7.1 The One-Period Binomial Model for Calls 143

7.2 The One-Period Binomial Model for Puts 146

7.3 Arbitraging Price Discrepancies 149

7.4 The Multiperiod Model 151

7.5 American Options and Early Exercise in the Binomial Framework 154

7.6 Dividends and Recombination 155

7.7 Path Independence and Path Dependence 159

7.8 Recap and Preview 159

Appendix 7A Derivation of Equation (7.9) 159

Appendix 7B Pascal's Triangle and the Binomial Model 161

Questions and Problems 163

Notes 163

Chapter 8 Calculating the Greeks in the Binomial Model 165

8.1 Standard Approach 165

8.2 An Enhanced Method for Estimating Delta and Gamma 170

8.3 Numerical Examples 172

8.4 Dividends 174

8.5 Recap and Preview 175

Questions and Problems 175

Notes 176

Chapter 9 Convergence of the Binomial Model to the Black-Scholes-Merton Model 177

9.1 Setting Up the Problem 177

9.2 The Hsia Proof 181

9.3 Put Options 187

9.4 Dividends 188

9.5 Recap and Preview 188

Questions and Problems 189

Notes 190

Part III Continuous Time Derivatives Pricing Theory

Chapter 10 The Basics of Brownian Motion and Wiener Processes 193

10.1 Brownian Motion 193

10.2 The Wiener Process 195

10.3 Properties of a Model of Asset Price Fluctuations 196

10.4 Building a Model of Asset Price Fluctuations 199

10.5 Simulating Brownian Motion and Wiener Processes 202

10.6 Formal Statement of Wiener Process Properties 205

10.7 Recap and Preview 207

Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals 207

Questions and Problems 208

Notes 209

Chapter 11 Stochastic Calculus and Itô's Lemma 211

11.1 A Result from Basic Calculus 211

11.2 Introducing Stochastic Calculus and Itô's Lemma 212

11.3 Itô's Integral 215

11.4 The Integral Form of Itô's Lemma 216

11.5 Some Additional Cases of Itô's Lemma 217

11.6 Recap and Preview 219

Appendix 11A Technical Stochastic Integral Results 220
11A.1 Selected Stochastic Integral Results 220
11A.2 A General Linear Theorem 224

Questions and Problems 229

Notes 230

Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets 231

12.1 A Stochastic Process for the Asset Relative Return 232

12.2 A Stochastic Process for the Asset Price Change 235

12.3 Solving the Stochastic Differential Equation 236

12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations 237

12.5 Finding the Expected Future Asset Price 238

12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? 240

12.7 Recap and Preview 241

Questions and Problems 242

Notes 242

Chapter 13 Deriving the Black-Scholes-Merton Model 245

13.1 Derivation of the European Call Option Pricing Formula 245

13.2 The European Put Option Pricing Formula 249

13.3 Deriving the Black-Scholes-Merton Model as an Expected Value 250

13.4 Deriving the Black-Scholes-Merton Model as the Solution of a Partial Differential Equation 254

13.5 Decomposing the Black-Scholes-Merton Model into Binary Options 258

13.6 Black-Scholes-Merton Option Pricing When There Are Dividends 259

13.7 Selected Black-Scholes-Merton Model Limiting Results 259

13.8 Computing the Black-Scholes-Merton Option Pricing Model Values 262

13.9 Recap and Preview 265

Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model 265

Questions and Problems 269

Notes 270

Chapter 14 The Greeks in the Black-Scholes-Merton Model 271

14.1 Delta: The First Derivative with Respect to the Underlying Price 274

14.2 Gamma: The Second Derivative with Respect to the Underlying Price 274

14.3 Theta: The First Derivative with Respect to Time 275

14.4 Verifying the Solution of the Partial Differential Equation 275

14.5 Selected Other Partial Derivatives of the Black-Scholes-Merton Model 277

14.6 Partial Derivatives of the Black-Scholes-Merton European Put Option Pricing Model 278

14.7 Incorporating Dividends 279

14.8 Greek Sensitivities 280

14.9 Elasticities 283

14.10 Extended Greeks of the Black-Scholes-Merton Option Pricing Model 284

14.11 Recap and Preview 284

Questions and Problems 285

Notes 286

Chapter 15 Girsanov's Theorem in Option Pricing 287

15.1 The Martingale Representation Theorem 287

15.2 Introducing the Radon-Nikodym Derivative by Changing the Drift for a Single Random Variable 289

15.3 A Complete Probability Space 291

15.4 Formal Statement of Girsanov's Theorem 292

15.5 Changing the Drift in a Continuous Time Stochastic Process 293

15.6 Changing the Drift of an Asset Price Process 297

15.7 Recap and Preview 300

Questions and Problems 301

Notes 302

Chapter 16 Connecting Discrete and Continuous Brownian Motions 303

16.1 Brownian Motion in a Discrete World 303

16.2 Moving from a Discrete to a Continuous World 306

16.3 Changing the Probability Measure with the Radon-Nikodym Derivative in Discrete Time 310

16.4 The Kolmogorov Equations 313

16.5 Recap and Preview 321

Questions and Problems 322

Notes 322

Part IV Extensions and Generalizations of Derivative Pricing

Chapter 17 Applying Linear Homogeneity to Option Pricing 327

17.1 Introduction to Exchange Options 327

17.2 Homogeneous Functions 328

17.3 Euler's Rule 330

17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black-Scholes-Merton Model 330

17.5 Exchange Option Pricing 333

17.6 Spread Options 337

17.7 Forward Start Options 339

17.8 Recap and Preview 341

Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model 342

Appendix 17B Multivariate Itô's Lemma 344

Appendix 17C Greeks of the Exchange Option Model 345

Questions and Problems 347

Notes 347

Chapter 18 Compound Option Pricing 349

18.1 Equity as an Option 350

18.2 Valuing an Option on the Equity as a Compound Option 351

18.3 Compound Option...

Details
Erscheinungsjahr: 2024
Fachbereich: Betriebswirtschaft
Genre: Wirtschaft
Rubrik: Recht & Wirtschaft
Medium: Buch
Inhalt: Preface xvChapter 1 Introduction and Overview 11.1 Motivation for This Book 21.2 What Is a Derivative? 61.3 Options Versus Forwards
Futures
and Swaps 81.4 Size and Scope of the Financial Derivatives Markets 91.5 Outline and Features of the Book 121.6 F
ISBN-13: 9781394179657
ISBN-10: 1394179650
Sprache: Englisch
Einband: Gebunden
Autor: Chance, Don M.
Brooks, Robert E.
Hersteller: John Wiley & Sons Inc
Maße: 261 x 185 x 45 mm
Von/Mit: Don M. Chance (u. a.)
Erscheinungsdatum: 25.01.2024
Gewicht: 1,354 kg
Artikel-ID: 127189453
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte