51,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 2-4 Werktage
Convert your intuition into technical descriptions of anomalous data
Detect anomalies using statistical tools, such as distributions, variance and standard deviation, robust statistics, and interquartile range
Apply state-of-the-art anomaly detection techniques in the realms of clustering and time series analysis
Work with common Python packages for outlier detection and time series analysis, such as scikit-learn, PyOD, and tslearn
Develop a project from the ground up which finds anomalies in data, starting with simple arrays of numeric data and expanding to include multivariate inputs and even time series data
Convert your intuition into technical descriptions of anomalous data
Detect anomalies using statistical tools, such as distributions, variance and standard deviation, robust statistics, and interquartile range
Apply state-of-the-art anomaly detection techniques in the realms of clustering and time series analysis
Work with common Python packages for outlier detection and time series analysis, such as scikit-learn, PyOD, and tslearn
Develop a project from the ground up which finds anomalies in data, starting with simple arrays of numeric data and expanding to include multivariate inputs and even time series data
Teaches state-of-the-art outlier detection techniques
Helps you build a fully functional anomaly detection service
Discusses why humans are natural anomaly detectors
Part I. What is an Anomaly?.- Chapter 1. The Importance of Anomalies and Anomaly Detection.- Chapter 2. Humans are Pattern Matchers.- Chapter 3. Formalizing Anomaly Detection.- Part II. Building an Anomaly Detector.- Chapter 4. Laying out the Framework.- Chapter 5. Building a Test Suite.- Chapter 6. Implementing the First Methods.- Chapter 7. Extending the Ensemble.- Chapter 8. Visualize the Results.- Part III. Multivariate Anomaly Detection.- Chapter 9. Clustering and Anomalies.- Chapter 10. Connectivity-Based Outlier Factor (COF).- Chapter 11. Local Correlation Integral (LOCI).- Chapter 12. Copula-Based Outlier Detection (COPOD).- Part IV. Time Series Anomaly Detection.- Chapter 13. Time and Anomalies.- Chapter 14. Change Point Detection.- Chapter 15. An Introduction to Multi-Series Anomaly Detection.- Chapter 16. Standard Deviation of Differences (DIFFSTD).- Chapter 17. Symbolic Aggregate Approximation (SAX).- Part V. Stacking Up to the Competition.- Chapter 18. Configuring Azure Cognitive Services Anomaly Detector.- Chapter 19. Performing a Bake-Off.- Appendix: Bibliography.
Erscheinungsjahr: | 2022 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xx
353 S. 106 s/w Illustr. 353 p. 106 illus. |
ISBN-13: | 9781484288696 |
ISBN-10: | 1484288696 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Feasel, Kevin |
Auflage: | 1st edition |
Hersteller: | APRESS |
Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 254 x 178 x 21 mm |
Von/Mit: | Kevin Feasel |
Erscheinungsdatum: | 10.11.2022 |
Gewicht: | 0,706 kg |
Teaches state-of-the-art outlier detection techniques
Helps you build a fully functional anomaly detection service
Discusses why humans are natural anomaly detectors
Part I. What is an Anomaly?.- Chapter 1. The Importance of Anomalies and Anomaly Detection.- Chapter 2. Humans are Pattern Matchers.- Chapter 3. Formalizing Anomaly Detection.- Part II. Building an Anomaly Detector.- Chapter 4. Laying out the Framework.- Chapter 5. Building a Test Suite.- Chapter 6. Implementing the First Methods.- Chapter 7. Extending the Ensemble.- Chapter 8. Visualize the Results.- Part III. Multivariate Anomaly Detection.- Chapter 9. Clustering and Anomalies.- Chapter 10. Connectivity-Based Outlier Factor (COF).- Chapter 11. Local Correlation Integral (LOCI).- Chapter 12. Copula-Based Outlier Detection (COPOD).- Part IV. Time Series Anomaly Detection.- Chapter 13. Time and Anomalies.- Chapter 14. Change Point Detection.- Chapter 15. An Introduction to Multi-Series Anomaly Detection.- Chapter 16. Standard Deviation of Differences (DIFFSTD).- Chapter 17. Symbolic Aggregate Approximation (SAX).- Part V. Stacking Up to the Competition.- Chapter 18. Configuring Azure Cognitive Services Anomaly Detector.- Chapter 19. Performing a Bake-Off.- Appendix: Bibliography.
Erscheinungsjahr: | 2022 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xx
353 S. 106 s/w Illustr. 353 p. 106 illus. |
ISBN-13: | 9781484288696 |
ISBN-10: | 1484288696 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: | Feasel, Kevin |
Auflage: | 1st edition |
Hersteller: | APRESS |
Verantwortliche Person für die EU: | APress in Springer Science + Business Media, Heidelberger Platz 3, D-14197 Berlin, juergen.hartmann@springer.com |
Maße: | 254 x 178 x 21 mm |
Von/Mit: | Kevin Feasel |
Erscheinungsdatum: | 10.11.2022 |
Gewicht: | 0,706 kg |