Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Differential Geometry and Homogeneous Spaces
Taschenbuch von Kai Köhler
Sprache: Englisch

61,85 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
This textbook offers a rigorous introduction to the foundations of Riemannian Geometry, with a detailed treatment of homogeneous and symmetric spaces, as well as the foundations of the General Theory of Relativity.

Starting with the basics of manifolds, it presents key objects of differential geometry, such as Lie groups, vector bundles, and de Rham cohomology, with full mathematical details. Next, the fundamental concepts of Riemannian geometry are introduced, paving the way for the study of homogeneous and symmetric spaces. As an early application, a version of the Poincaré¿Hopf and Chern¿Gauss¿Bonnet Theorems is derived. The final chapter provides an axiomatic deduction of the fundamental equations of the General Theory of Relativity as another important application. Throughout, the theory is illustrated with color figures to promote intuitive understanding, and over 200 exercises are provided (many with solutions) to help master the material.

The book is designed to cover a two-semester graduate course for students in mathematics or theoretical physics and can also be used for advanced undergraduate courses. It assumes a solid understanding of multivariable calculus and linear algebra.
This textbook offers a rigorous introduction to the foundations of Riemannian Geometry, with a detailed treatment of homogeneous and symmetric spaces, as well as the foundations of the General Theory of Relativity.

Starting with the basics of manifolds, it presents key objects of differential geometry, such as Lie groups, vector bundles, and de Rham cohomology, with full mathematical details. Next, the fundamental concepts of Riemannian geometry are introduced, paving the way for the study of homogeneous and symmetric spaces. As an early application, a version of the Poincaré¿Hopf and Chern¿Gauss¿Bonnet Theorems is derived. The final chapter provides an axiomatic deduction of the fundamental equations of the General Theory of Relativity as another important application. Throughout, the theory is illustrated with color figures to promote intuitive understanding, and over 200 exercises are provided (many with solutions) to help master the material.

The book is designed to cover a two-semester graduate course for students in mathematics or theoretical physics and can also be used for advanced undergraduate courses. It assumes a solid understanding of multivariable calculus and linear algebra.
Über den Autor

Kai Köhler is Professor of Mathematics at the Heinrich Heine University of Düsseldorf. His research area is Geometry, with an emphasis on Global Analysis and Arithmetic Algebraic Geometry.

Inhaltsverzeichnis

1 Manifolds.- 2 Vector Bundles and Tensors.- 3 Riemannian Manifolds.- 4 The Poincaré-Hopf Theorem and the Chern-Gauß-Bonnet Theorem.- 5 Geodesics.- 6 Homogeneous Spaces.- 7 Symmetric Spaces.- 8 General Relativity.- A Solutions to Selected Exercises.

Details
Erscheinungsjahr: 2024
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
292 S.
ISBN-13: 9783662697207
ISBN-10: 3662697203
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Köhler, Kai
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 16 mm
Von/Mit: Kai Köhler
Erscheinungsdatum: 30.10.2024
Gewicht: 0,519 kg
Artikel-ID: 129483675
Über den Autor

Kai Köhler is Professor of Mathematics at the Heinrich Heine University of Düsseldorf. His research area is Geometry, with an emphasis on Global Analysis and Arithmetic Algebraic Geometry.

Inhaltsverzeichnis

1 Manifolds.- 2 Vector Bundles and Tensors.- 3 Riemannian Manifolds.- 4 The Poincaré-Hopf Theorem and the Chern-Gauß-Bonnet Theorem.- 5 Geodesics.- 6 Homogeneous Spaces.- 7 Symmetric Spaces.- 8 General Relativity.- A Solutions to Selected Exercises.

Details
Erscheinungsjahr: 2024
Fachbereich: Geometrie
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: x
292 S.
ISBN-13: 9783662697207
ISBN-10: 3662697203
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Köhler, Kai
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 16 mm
Von/Mit: Kai Köhler
Erscheinungsdatum: 30.10.2024
Gewicht: 0,519 kg
Artikel-ID: 129483675
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte