Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
51,10 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
Über den Autor
Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology.
Inhaltsverzeichnis
Part I. Density Ratio Approach to Machine Learning: 1. Introduction; Part II. Methods of Density Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction; Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation; Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis; Part V. Conclusions: 17. Conclusions and future directions.
Details
Erscheinungsjahr: | 2018 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781108461733 |
ISBN-10: | 1108461735 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Sugiyama, Masashi
Suzuki, Taiji Kanamori, Takafumi |
Hersteller: | Cambridge University Press |
Maße: | 234 x 156 x 19 mm |
Von/Mit: | Masashi Sugiyama (u. a.) |
Erscheinungsdatum: | 01.02.2018 |
Gewicht: | 0,521 kg |
Über den Autor
Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology.
Inhaltsverzeichnis
Part I. Density Ratio Approach to Machine Learning: 1. Introduction; Part II. Methods of Density Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction; Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation; Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis; Part V. Conclusions: 17. Conclusions and future directions.
Details
Erscheinungsjahr: | 2018 |
---|---|
Genre: | Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9781108461733 |
ISBN-10: | 1108461735 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: |
Sugiyama, Masashi
Suzuki, Taiji Kanamori, Takafumi |
Hersteller: | Cambridge University Press |
Maße: | 234 x 156 x 19 mm |
Von/Mit: | Masashi Sugiyama (u. a.) |
Erscheinungsdatum: | 01.02.2018 |
Gewicht: | 0,521 kg |
Warnhinweis