Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications.

This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing.

This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning.
3D deep learning is a rapidly evolving field that has the potential to transform various industries. This book provides a comprehensive overview of the current state-of-the-art in 3D deep learning, covering a wide range of research topics and applications. It collates the most recent research advances in 3D deep learning, including algorithms and applications, with a focus on efficient methods to tackle the key technical challenges in current 3D deep learning research and adoption, therefore making 3D deep learning more practical and feasible for real-world applications.

This book is organized into five sections, each of which addresses different aspects of 3D deep learning. Section I: Sample Efficient 3D Deep Learning, focuses on developing efficient algorithms to build accurate 3D models with limited annotated samples. Section II: Representation Efficient 3D Deep Learning, deals with the challenge of developing efficient representations for dynamic 3D scenes and multiple 3D modalities. Section III: Robust 3D Deep Learning, presents methods for improving the robustness and reliability of deep learning models in real-world applications. Section IV: Resource Efficient 3D Deep Learning, explores ways to reduce the computation cost of 3D models and improve their efficiency in resource-limited environments. Section V: Emerging 3D Deep Learning Applications, showcases how 3D deep learning is transforming industries and enabling new applications for healthcare and manufacturing.

This collection is a valuable resource for researchers and practitioners interested in exploring the potential of 3D deep learning.
Details
Erscheinungsjahr: 2024
Genre: Importe, Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9789811286483
ISBN-10: 9811286485
Sprache: Englisch
Einband: Gebunden
Autor: Xiaoli Li, Xulei Yang Hao Su
Hersteller: World Scientific
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 31 mm
Von/Mit: Xulei Yang Hao Su Xiaoli Li
Erscheinungsdatum: 08.09.2024
Gewicht: 0,859 kg
Artikel-ID: 128155377

Ähnliche Produkte

Taschenbuch
Taschenbuch
-16 %
Taschenbuch
-19 %