Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
61,35 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Kategorien:
Beschreibung
Rev. edition of: Data mining: practical machine learning tools and techniques / Ian H. Witten, Eibe Frank, Mark A. Hall. c2013.
Rev. edition of: Data mining: practical machine learning tools and techniques / Ian H. Witten, Eibe Frank, Mark A. Hall. c2013.
Über den Autor
Ian H. Witten is a professor of computer science at the University of Waikato in New Zealand. He directs the New Zealand Digital Library research project. His research interests include information retrieval, machine learning, text compression, and programming by demonstration. He received an MA in Mathematics from Cambridge University, England; an MSc in Computer Science from the University of Calgary, Canada; and a PhD in Electrical Engineering from Essex University, England. He is a fellow of the ACM and of the Royal Society of New Zealand. He has published widely on digital libraries, machine learning, text compression, hypertext, speech synthesis and signal processing, and computer typography.
Inhaltsverzeichnis
Part I: Introduction to data mining1. What's it all about?
2. Input: Concepts, instances, attributes
3. Output: Knowledge representation
4. Algorithms: The basic methods
5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes6. Trees and rules
7. Extending instance-based and linear models
8. Data transformations
9. Probabilistic methods
10. Deep learning
11. Beyond supervised and unsupervised learning
12. Ensemble learning
13. Moving on: applications and beyond
2. Input: Concepts, instances, attributes
3. Output: Knowledge representation
4. Algorithms: The basic methods
5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes6. Trees and rules
7. Extending instance-based and linear models
8. Data transformations
9. Probabilistic methods
10. Deep learning
11. Beyond supervised and unsupervised learning
12. Ensemble learning
13. Moving on: applications and beyond
Details
Erscheinungsjahr: | 2017 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780128042915 |
ISBN-10: | 0128042915 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Witten, Ian
Frank, Eibe Hall, Mark A. Pal, Christopher J. |
Auflage: | 4. Auflage |
Hersteller: |
Elsevier LTD
Morgan Kaufmann |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 233 x 191 x 32 mm |
Von/Mit: | Ian Witten (u. a.) |
Erscheinungsdatum: | 02.01.2017 |
Gewicht: | 1,305 kg |
Über den Autor
Ian H. Witten is a professor of computer science at the University of Waikato in New Zealand. He directs the New Zealand Digital Library research project. His research interests include information retrieval, machine learning, text compression, and programming by demonstration. He received an MA in Mathematics from Cambridge University, England; an MSc in Computer Science from the University of Calgary, Canada; and a PhD in Electrical Engineering from Essex University, England. He is a fellow of the ACM and of the Royal Society of New Zealand. He has published widely on digital libraries, machine learning, text compression, hypertext, speech synthesis and signal processing, and computer typography.
Inhaltsverzeichnis
Part I: Introduction to data mining1. What's it all about?
2. Input: Concepts, instances, attributes
3. Output: Knowledge representation
4. Algorithms: The basic methods
5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes6. Trees and rules
7. Extending instance-based and linear models
8. Data transformations
9. Probabilistic methods
10. Deep learning
11. Beyond supervised and unsupervised learning
12. Ensemble learning
13. Moving on: applications and beyond
2. Input: Concepts, instances, attributes
3. Output: Knowledge representation
4. Algorithms: The basic methods
5. Credibility: Evaluating what's been learned Part II. More advanced machine learning schemes6. Trees and rules
7. Extending instance-based and linear models
8. Data transformations
9. Probabilistic methods
10. Deep learning
11. Beyond supervised and unsupervised learning
12. Ensemble learning
13. Moving on: applications and beyond
Details
Erscheinungsjahr: | 2017 |
---|---|
Genre: | Importe, Informatik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: | Kartoniert / Broschiert |
ISBN-13: | 9780128042915 |
ISBN-10: | 0128042915 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
Witten, Ian
Frank, Eibe Hall, Mark A. Pal, Christopher J. |
Auflage: | 4. Auflage |
Hersteller: |
Elsevier LTD
Morgan Kaufmann |
Verantwortliche Person für die EU: | Produktsicherheitsverantwortliche/r, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de |
Maße: | 233 x 191 x 32 mm |
Von/Mit: | Ian Witten (u. a.) |
Erscheinungsdatum: | 02.01.2017 |
Gewicht: | 1,305 kg |
Sicherheitshinweis