Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Conjugate Gradient Algorithms in Nonconvex Optimization
Taschenbuch von Radoslaw Pytlak
Sprache: Englisch

142,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 2-4 Werktage

Produkt Anzahl: Gib den gewünschten Wert ein oder benutze die Schaltflächen um die Anzahl zu erhöhen oder zu reduzieren.
Kategorien:
Beschreibung
Conjugate direction methods were proposed in the early 1950s. When high speed digital computing machines were developed, attempts were made to lay the fo- dations for the mathematical aspects of computations which could take advantage of the ef?ciency of digital computers. The National Bureau of Standards sponsored the Institute for Numerical Analysis, which was established at the University of California in Los Angeles. A seminar held there on numerical methods for linear equationswasattendedbyMagnusHestenes, EduardStiefel andCorneliusLanczos. This led to the ?rst communication between Lanczos and Hestenes (researchers of the NBS) and Stiefel (of the ETH in Zurich) on the conjugate direction algorithm. The method is attributed to Hestenes and Stiefel who published their joint paper in 1952 [101] in which they presented both the method of conjugate gradient and the conjugate direction methods including conjugate Gram¿Schmidt processes. A closelyrelatedalgorithmwasproposedbyLanczos[114]whoworkedonalgorithms for determiningeigenvalues of a matrix. His iterative algorithm yields the similarity transformation of a matrix into the tridiagonal form from which eigenvalues can be well approximated.Thethree-termrecurrencerelationofthe Lanczosprocedurecan be obtained by eliminating a vector from the conjugate direction algorithm scheme. Initially the conjugate gradient algorithm was called the Hestenes¿Stiefel¿Lanczos method [86].
Conjugate direction methods were proposed in the early 1950s. When high speed digital computing machines were developed, attempts were made to lay the fo- dations for the mathematical aspects of computations which could take advantage of the ef?ciency of digital computers. The National Bureau of Standards sponsored the Institute for Numerical Analysis, which was established at the University of California in Los Angeles. A seminar held there on numerical methods for linear equationswasattendedbyMagnusHestenes, EduardStiefel andCorneliusLanczos. This led to the ?rst communication between Lanczos and Hestenes (researchers of the NBS) and Stiefel (of the ETH in Zurich) on the conjugate direction algorithm. The method is attributed to Hestenes and Stiefel who published their joint paper in 1952 [101] in which they presented both the method of conjugate gradient and the conjugate direction methods including conjugate Gram¿Schmidt processes. A closelyrelatedalgorithmwasproposedbyLanczos[114]whoworkedonalgorithms for determiningeigenvalues of a matrix. His iterative algorithm yields the similarity transformation of a matrix into the tridiagonal form from which eigenvalues can be well approximated.Thethree-termrecurrencerelationofthe Lanczosprocedurecan be obtained by eliminating a vector from the conjugate direction algorithm scheme. Initially the conjugate gradient algorithm was called the Hestenes¿Stiefel¿Lanczos method [86].
Zusammenfassung

Includes supplementary material: [...]

Inhaltsverzeichnis
Conjugate Direction Methods for Quadratic Problems.- Conjugate Gradient Methods for Nonconvex Problems.- Memoryless Quasi-Newton Methods.- Preconditioned Conjugate Gradient Algorithms.- Limited Memory Quasi-Newton Algorithms.- The Method of Shortest Residuals and Nondifferentiable Optimization.- The Method of Shortest Residuals for Differentiable Problems.- The Preconditioned Shortest Residuals Algorithm.- Optimization on a Polyhedron.- Conjugate Gradient Algorithms for Problems with Box Constraints.- Preconditioned Conjugate Gradient Algorithms for Problems with Box Constraints.- Preconditioned Conjugate Gradient Based Reduced-Hessian Methods.
Details
Erscheinungsjahr: 2010
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xxvi
478 S.
ISBN-13: 9783642099250
ISBN-10: 3642099254
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Pytlak, Radoslaw
Auflage: Softcover reprint of hardcover 1st edition 2009
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 28 mm
Von/Mit: Radoslaw Pytlak
Erscheinungsdatum: 20.11.2010
Gewicht: 0,756 kg
Artikel-ID: 107135824
Zusammenfassung

Includes supplementary material: [...]

Inhaltsverzeichnis
Conjugate Direction Methods for Quadratic Problems.- Conjugate Gradient Methods for Nonconvex Problems.- Memoryless Quasi-Newton Methods.- Preconditioned Conjugate Gradient Algorithms.- Limited Memory Quasi-Newton Algorithms.- The Method of Shortest Residuals and Nondifferentiable Optimization.- The Method of Shortest Residuals for Differentiable Problems.- The Preconditioned Shortest Residuals Algorithm.- Optimization on a Polyhedron.- Conjugate Gradient Algorithms for Problems with Box Constraints.- Preconditioned Conjugate Gradient Algorithms for Problems with Box Constraints.- Preconditioned Conjugate Gradient Based Reduced-Hessian Methods.
Details
Erscheinungsjahr: 2010
Fachbereich: Allgemeines
Genre: Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xxvi
478 S.
ISBN-13: 9783642099250
ISBN-10: 3642099254
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Pytlak, Radoslaw
Auflage: Softcover reprint of hardcover 1st edition 2009
Hersteller: Springer-Verlag GmbH
Springer Berlin Heidelberg
Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com
Maße: 235 x 155 x 28 mm
Von/Mit: Radoslaw Pytlak
Erscheinungsdatum: 20.11.2010
Gewicht: 0,756 kg
Artikel-ID: 107135824
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte