Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Computer Vision
Algorithms and Applications
Taschenbuch von Richard Szeliski
Sprache: Englisch

59,45 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos.
More than just a source of ¿recipes,¿ this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles.
Topics and features:
Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses
Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality
Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects

Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade

Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software

Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos.
More than just a source of ¿recipes,¿ this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles.
Topics and features:
Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses
Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality
Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects

Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade

Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software

Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Über den Autor

Dr. Richard Szeliski has more than 40 years' experience in computer vision research, most recently at Facebook and Microsoft Research, where he led the Computational Photography and Interactive Visual Media groups. He is currently an Affiliate Professor at the University of Washington where he co-developed (with Steve Seitz) the widely adopted computer vision curriculum on which this book is based. He was awarded the IEEE Computer Society PAMI Distinguished Researcher Award in 2017 and is an IEEE and ACM Fellow.

Zusammenfassung

Presents state-of-the-art techniques, featuring new material on deep learning and deep neural networks

Structured to support active curricula and project-oriented courses

Provides, exercises and additional readings, as well as supplementary material

Inhaltsverzeichnis

1 Introduction.- 2 Image Formation.- 3 Image Processing.- 4 Model Fitting and Optimization.- 5 Deep Learning.- 6 Recognition.- 7 Feature Detection and Matching.- 8 Image Alignment and Stitching.- 9 Motion Estimation.- 10 Computational Photography.- 11 Structure from Motion and SLAM.- 12 Depth Estimation.- 13 3D Reconstruction.- 14 Image-Based Rendering.- 15 Conclusion.- Appendix A: Linear Algebra and Numerical Techniques.- Appendix B: Bayesian Modeling and Inference.- Appendix C: Supplementary Material.

Details
Erscheinungsjahr: 2023
Fachbereich: Anwendungs-Software
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Texts in Computer Science
Inhalt: xxii
925 S.
374 s/w Illustr.
144 farbige Illustr.
925 p. 518 illus.
144 illus. in color.
ISBN-13: 9783030343743
ISBN-10: 303034374X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Szeliski, Richard
Auflage: 2nd ed. 2022
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Texts in Computer Science
Maße: 279 x 210 x 37 mm
Von/Mit: Richard Szeliski
Erscheinungsdatum: 06.01.2023
Gewicht: 2,534 kg
Artikel-ID: 126276094
Über den Autor

Dr. Richard Szeliski has more than 40 years' experience in computer vision research, most recently at Facebook and Microsoft Research, where he led the Computational Photography and Interactive Visual Media groups. He is currently an Affiliate Professor at the University of Washington where he co-developed (with Steve Seitz) the widely adopted computer vision curriculum on which this book is based. He was awarded the IEEE Computer Society PAMI Distinguished Researcher Award in 2017 and is an IEEE and ACM Fellow.

Zusammenfassung

Presents state-of-the-art techniques, featuring new material on deep learning and deep neural networks

Structured to support active curricula and project-oriented courses

Provides, exercises and additional readings, as well as supplementary material

Inhaltsverzeichnis

1 Introduction.- 2 Image Formation.- 3 Image Processing.- 4 Model Fitting and Optimization.- 5 Deep Learning.- 6 Recognition.- 7 Feature Detection and Matching.- 8 Image Alignment and Stitching.- 9 Motion Estimation.- 10 Computational Photography.- 11 Structure from Motion and SLAM.- 12 Depth Estimation.- 13 3D Reconstruction.- 14 Image-Based Rendering.- 15 Conclusion.- Appendix A: Linear Algebra and Numerical Techniques.- Appendix B: Bayesian Modeling and Inference.- Appendix C: Supplementary Material.

Details
Erscheinungsjahr: 2023
Fachbereich: Anwendungs-Software
Genre: Informatik, Mathematik, Medizin, Naturwissenschaften, Technik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Texts in Computer Science
Inhalt: xxii
925 S.
374 s/w Illustr.
144 farbige Illustr.
925 p. 518 illus.
144 illus. in color.
ISBN-13: 9783030343743
ISBN-10: 303034374X
Sprache: Englisch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Szeliski, Richard
Auflage: 2nd ed. 2022
Hersteller: Springer Nature Switzerland
Springer International Publishing
Springer International Publishing AG
Texts in Computer Science
Maße: 279 x 210 x 37 mm
Von/Mit: Richard Szeliski
Erscheinungsdatum: 06.01.2023
Gewicht: 2,534 kg
Artikel-ID: 126276094
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte