Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Cohesive Subgraph Computation over Large Sparse Graphs
Algorithms, Data Structures, and Programming Techniques
Buch von Lu Qin (u. a.)
Sprache: Englisch

53,49 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
This book is considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation. With rapid development of information technology, huge volumes of graph data are accumulated. An availability of rich graph data not only brings great opportunities for realizing big values of data to serve key applications, but also brings great challenges in computation. Using a consistent terminology, the book gives an excellent introduction to the models and algorithms for the problem of cohesive subgraph computation. The materials of this book are well organized from introductory content to more advanced topics while also providing well-designed source codes for most algorithms described in the book.
This is a timely book for researchers who are interested in this topic and efficient data structure design for large sparse graph processing. It is also a guideline book for new researchers to get to know the area of cohesive subgraph computation.
This book is considered the first extended survey on algorithms and techniques for efficient cohesive subgraph computation. With rapid development of information technology, huge volumes of graph data are accumulated. An availability of rich graph data not only brings great opportunities for realizing big values of data to serve key applications, but also brings great challenges in computation. Using a consistent terminology, the book gives an excellent introduction to the models and algorithms for the problem of cohesive subgraph computation. The materials of this book are well organized from introductory content to more advanced topics while also providing well-designed source codes for most algorithms described in the book.
This is a timely book for researchers who are interested in this topic and efficient data structure design for large sparse graph processing. It is also a guideline book for new researchers to get to know the area of cohesive subgraph computation.
Inhaltsverzeichnis
Introduction.- Linear Heap Data Structures.- Minimum Degree-based Core Decomposition.- Average Degree-based Densest Subgraph Computation.- Higher-order Structure-based Graph Decomposition.- Edge Connectivity-based Graph Decomposition.
Details
Erscheinungsjahr: 2019
Fachbereich: Grundlagen
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Springer Series in the Data Sciences
Inhalt: xii
107 S.
20 s/w Illustr.
1 farbige Illustr.
107 p. 21 illus.
1 illus. in color.
ISBN-13: 9783030035983
ISBN-10: 3030035980
Sprache: Englisch
Herstellernummer: 978-3-030-03598-3
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Qin, Lu
Chang, Lijun
Auflage: 1st ed. 2018
Hersteller: Springer International Publishing
Springer Series in the Data Sciences
Maße: 241 x 160 x 13 mm
Von/Mit: Lu Qin (u. a.)
Erscheinungsdatum: 07.01.2019
Gewicht: 0,354 kg
Artikel-ID: 114694576
Inhaltsverzeichnis
Introduction.- Linear Heap Data Structures.- Minimum Degree-based Core Decomposition.- Average Degree-based Densest Subgraph Computation.- Higher-order Structure-based Graph Decomposition.- Edge Connectivity-based Graph Decomposition.
Details
Erscheinungsjahr: 2019
Fachbereich: Grundlagen
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Reihe: Springer Series in the Data Sciences
Inhalt: xii
107 S.
20 s/w Illustr.
1 farbige Illustr.
107 p. 21 illus.
1 illus. in color.
ISBN-13: 9783030035983
ISBN-10: 3030035980
Sprache: Englisch
Herstellernummer: 978-3-030-03598-3
Ausstattung / Beilage: HC runder Rücken kaschiert
Einband: Gebunden
Autor: Qin, Lu
Chang, Lijun
Auflage: 1st ed. 2018
Hersteller: Springer International Publishing
Springer Series in the Data Sciences
Maße: 241 x 160 x 13 mm
Von/Mit: Lu Qin (u. a.)
Erscheinungsdatum: 07.01.2019
Gewicht: 0,354 kg
Artikel-ID: 114694576
Warnhinweis