Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Über den Autor
Camil Muscalu is Associate Professor of Mathematics at Cornell University, New York.
Inhaltsverzeichnis
Preface; Acknowledgements; 1. Fourier series: convergence and summability; 2. Harmonic functions, Poisson kernel; 3. Conjugate harmonic functions, Hilbert transform; 4. The Fourier Transform on Rd and on LCA groups; 5. Introduction to probability theory; 6. Fourier series and randomness; 7. Calderón-Zygmund theory of singular integrals; 8. Littlewood-Paley theory; 9. Almost orthogonality; 10. The uncertainty principle; 11. Fourier restriction and applications; 12. Introduction to the Weyl calculus; References; Index.
Details
Erscheinungsjahr: 2017
Fachbereich: Analysis
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9780521882453
ISBN-10: 0521882451
Sprache: Englisch
Einband: Gebunden
Autor: Muscalu, Camil
Schlag, Wilhelm
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 235 x 157 x 25 mm
Von/Mit: Camil Muscalu (u. a.)
Erscheinungsdatum: 08.05.2017
Gewicht: 0,714 kg
Artikel-ID: 106375018

Ähnliche Produkte

Taschenbuch