Dekorationsartikel gehören nicht zum Leistungsumfang.
Biophysik
Taschenbuch von W. Hoppe (u. a.)
Sprache: Deutsch

69,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 4-7 Werktage

Kategorien:
Beschreibung
Mit Beiträgen zahlreicher Fachwissenschaftler
Mit Beiträgen zahlreicher Fachwissenschaftler
Inhaltsverzeichnis
1 Bau der Zelle (Prokaryoten, Eukaryoten)..- 1.1 Eigenschaften der Zelle.- 1.1.1 Molekül ¿ Organelle ¿ Zelle ¿ Organismus.- 1.1.2 Die Zelle als Grundeinheit des Lebens.- 1.1.3 Die Größe der Zelle.- 1.1.4 Protozyte und Euzyte.- 1.2 Zellorganellen.- 1.2.1 Plasmalemma.- 1.2.2 Zellkern.- 1.2.3 Grundplasma.- 1.2.4 Organellen aus einem Kompartiment.- 1.2.5 Zusammengesetzte Organellen.- 1.2.6 Zellhüllen und Zellverbindungen.- 1.3 Kern-und Zellteilung.- 1.3.1 Mitose.- 1.3.2 Meiose.- 1.3.3 Zellteilung.- 1.4 Evolution der Euzyte.- 1.5 Viren und Bakteriophagen.- 2 Der chemische Bau biologisch wichtiger Makromoleküle..- 2.1 Einleitung.- 2.2 Nucleinsäuren und ihre Bausteine.- 2.2.1 Nucleotide als Bausteine.- 2.2.2 Die kovalente Polynucleotid-Struktur.- 2.2.3 Das Prinzip der Basenpaarung.- 2.2.4 Die Doppelhelix-Struktur der DNA.- 2.2.5 Eigenschaften der DNA.- 2.3 Proteine und ihre Bausteine.- 2.3.1 Aminosäuren als Bausteine.- 2.3.2 Das Prinzip der Verknüpfung.- 2.3.3 Eigenschaften der Aminosäuren.- 2.3.4 Die kovalente Struktur von Proteinen.- 2.3.5 Die Stabilisierung der Strukturelemente durch Wasserstoffbrücken (Sekundärstruktur).- 2.3.6 Die Raumstruktur.- 3 Methoden zur Untersuchung struktureller und funktioneller Eigenschaften einzelner Biomoleküle sowie ganzer biologischer Systeme.- 3.1 Äußere Struktur.- 3.1.1 Allgemeines.- 3.1.2 Experimented Methoden.- 3.2 Innere Struktur und Funktion.- 3.2.1 Strukturanalyse mit Röntgenstrahlen.- 3.2.2 Diffuse Kleinwinkelstreuung von makromolekularen Lösungen.- 3.2.3 Strukturanalyse mit Elektronenstrahlen (Elektronenmikroskopie).- 3.2.4 Lichtstreuung an Makromolekülen.- 3.2.5 Anwendung der Spektralphotometrie im UV- und sichtbaren Bereich.- 3.2.6 Die Anwendung der Photoakustischen Spektroskopie in der Biophysik.- 3.2.7 Wirkungsspektrometrie.- 3.2.8 ORD- und CD-Spektroskopie.- 3.2.9 Anwendung des Mößbauereffektes auf Probleme der Biophysik.- 3.2.10 Methoden zur Untersuchung schneller und funktioneller Eigenschaften einzelner chemischer Reaktionen.- 3.3 Elektronenspin-Resonanz-Spektroskopie.- 3.3.1 Einführung.- 3.3.2 Der Spin-Hamilton-Operator.- 3.3.3 ESR-Spektren von organischen Radikalen in Lösungen ¿ Isotrope Hyperfeinaufspaltung.- 3.3.4 ESR-Spektren von organischen Radikalen im Festkörper ¿ Anisotrope Hyperfeinaufspaltung.- 3.3.5 ESR-Spektren von anorganischen Radikalen ¿ g-Faktor-Anisotropie.- 3.3.6 ESR von organischen Molekülen im Triplett-Zustand ¿ Elektronen-Spin-Spin-Wechselwirkung.- 3.3.7 Relaxationszeiten und Linienform.- 3.3.8 Das ESR-Spektrometer.- 3.3.9 Verwandte Techniken ¿ Mehrfachresonanzen.- 3.3.10 Anwendungen.- 3.4 Kernresonanzspektroskopie.- 3.4.1 Einleitung.- 3.4.2 Grundlegende Theorie.- 3.4.3 Experimentelle Technik.- 3.4.4 Biophysikalische Anwendungen der Kernresonanzspektroskopie.- 4 Intra-und Intermolekulare Wechselwirkungen.- 4.1 Einleitung.- 4.2 Primärstruktur.- 4.2.1 Teilchen.- 4.2.2 Atome.- 4.2.3 Bindungen.- 4.3 Wechselwirkungen zwischen Strukturbausteinen.- 4.3.1 Die Abstoßung von Elektronenpaaren.- 4.3.2 Elektrostatische Kräfte.- 4.3.3 Dispersionskräfte.- 4.3.4 Wasserstoffbrücken.- 4.4 Charge-Transfer-Reaktionen in Biomolekülen.- 4.5 Konformationsumwandlungen in Biopolymeren.- 4.5.1 Einleitung.- 4.5.2 Theoretische Behandlung.- 4.5.3 Experimentelle Beispiele.- 4.6 Polare Wechselwirkungen, Hydratation, Protonenleitung und Konformation biologischer Systeme ¿Ergebnisse infrarotspektroskopischer Untersuchungen.- 4.6.1 Grundlagen.- 4.6.2 Wechselwirkung und Konformation bei Polynucleotiden.- 4.6.3 Wasserstoffbrücken zwischen Seitengruppen, Protonenleitung, Hydratation und Konformation von Proteinen.- 4.6.4 Experimentelle Technik.- 4.7 Debye-Hückel-Theorie (Kräfte zwischen Molekülen in Lösung).- 4.7.1 Debye-Hückel-Theorie.- 4.7.2 Quantenmechanische Diskussion.- 4.8 Polyelektrolyte und ihre Interaktionen.- 4.8.1 Einleitung.- 4.8.2 Polyelektrolyte in Salzlösungen.- 4.8.3 Polyelektrolyte an Grenzflächen.- 4.8.4 Polyelektrolyte in Komplexen.- 4.8.5 Ausblick.- 5 Energieübertragungsmechanismen.- 5.1 Allgemeine Grundlagen der Photophysik und Photochemie.- 5.1.1 Stationäre Zustande von Molekülen.- 5.1.2 Theoretische Grundlagen zur Beschreibung von Molekülzuständen.- 5.1.3 Übersicht über wichtige photophysikalische Prozesse.- 5.1.4 Mechanismen ausgewählter photophysikalischer Prozesse.- 5.1.5 Einige Anwendungen der Absorptions- und Fluoreszenzspektroskopie.- 5.1.6 Änderung der Basizität bzw. Acidität mit der Elektronenanregung.- 5.1.7 Fluoreszenzlöschung.- 5.1.8 Energiewanderung.- 5.1.9 Verzögerte Fluoreszenz.- 5.1.10 Photochemische Primärreaktionen.- 5.2 Energieübertragungsmechanismen.- 5.2.1 Klassische Betrachtung.- 5.2.2 Emittermolekül nahe an Absorberschicht.- 5.2.3 Energieübertragung in monomolekularen Schichtsystemen.- 5.2.4 Rückwirkung des Empfängermoleküls 2 auf das Sendermolekül 1.- 5.2.5 Emittermolekül im Echo eines Metallspiegels.- 5.2.6 Energieübertragung in kooperativen Systemen von Farbstoffmolekülen.- 6 Strahlenbiophysik..- 6.1 Einleitung.- 6.2 Die Strahlung und ihre Messung.- 6.2.1 Strahlenarten.- 6.2.2 Wechselwirkung Strahlung-Materie.- 6.2.3 Dosis und Dosisleistung.- 6.2.4 Dosimetrie.- 6.3 Beschreibung und Deutung der Strahlenwirkung.- 6.3.1 Dosiseffektkurven und Treffertheorie.- 6.3.2 Direkte und indirekte Strahlenwirkung.- 6.3.3 Energieübertragungsprozesse, Reaktionsgeschwindigkeiten, Impulsphoto- und -radiolyse.- 6.4 Molekulare Strahleneffekte.- 6.4.1 Strahlenchemie des Wassers.- 6.4.2 Radikale und Molekularprodukte.- 6.4.3 Modifizierung der Strahlenwirkung.- 6.5 Strahlenwirkung auf Biomoleküle und molekulare Strukturen.- 6.5.1 Strahlenwirkung auf Proteine.- 6.5.2 Strahlenwirkung auf Nucleinsäuren.- 6.5.3 Strahlenwirkung auf Membranstrukturen.- 6.6 Strahlenwirkung auf Zellen und Organismen.- 6.6.1 Strahlenwirkung auf die Zelle.- 6.6.2 Genetische Strahlenwirkungen.- 6.6.3 Strahlenstimulation.- 6.7 Strahlengefährdung und Strahlenschutz.- 6.7.1 Natürliche und zivilisatorische Strahlenbelastung.- 6.7.2 Strahlenschutz.- 7 Isotopen-Methoden in der Biologie.- 7.1 Einleitung.- 7.2 Stabile und radioaktive Isotope.- 7.2.1 Vergleichende Betrachtung.- 7.2.2 Stabile Isotope und die Prinzipien ihrer Messung.- 7.2.3 Radioaktive Isotope.- 7.2.4 Die wichtigsten Meßmethoden für radioaktive Isotope.- 7.3 Isotopeneffekte.- 7.3.1 Hauptursachen von Isotopeneffekten.- 7.3.2 Kinetische Isotopeneffekte und ihre Bestimmung.- 7.4 Analytische Isotopenanwendung.- 7.4.1 Aktivierungsanalyse.- 7.4.2 Isotopen-Verdünnungsanalysen.- 7.4.3 Radioimmunologische Analyse.- 7.5 Beispiele für Isotopenanwendungen.- 7.5.1 Verteilungsstudien.- 7.5.2 Stoffwechsel und Transport.- 7.5.3 Sterischer Verlauf von Enzymreaktionen an prochiralen Systemen.- 7.5.4 Isotopenaustauschstudien.- 8 Energetische und statistische Beziehungen.- 8.1 Allgemeines.- 8.2 Grundbegriffe der Gleichgewichtsthermodynamik.- 8.2.1 Erster Hauptsatz, Enthalpie.- 8.2.2 Zweiter Hauptsatz, Entropie, Freie Enthalpie, Gleichgewicht, maximale Nutzarbeit.- 8.2.3 Standardwerte der Zustandsgrößen.- 8.2.4 Grundreaktionsarbeit und Gleichgewichtskonstante.- 8.2.5 Chemisches Potential, Aktivität, Standardzustand.- 8.2.6 Phasengleichgewicht, Phasenregel.- 8.3 Interpretation thermodynamischer Größen durch die Molekularstatistik.- 8.3.1 Energieeigenwerte, Maxwell-Boltzmann-Verteilung, Zustandssummen.- 8.3.2 Zustandssummen und thermodynamische Funktionen, dritter Hauptsatz.- 8.3.3 Statistische Beschreibung des Gleichgewichts.- 8.4 Theorie der absoluten Reaktionsgeschwindigkeiten nach Eyring.- 8.4.1 Definition kinetischer Parameter.- 8.4.2 Theorie des Übergangszustandes.- 8.5 Energiefluß in der belebten Welt, ATP, Übertragungspotential.- 8.6 Irreversible Thermodynamik ¿ Ein Überblick. Peter Schuster.- 8.6.1 Einleitung.- 8.6.2 Gleichgewicht ¿ der Zustand perfekter dynamischer Kompensation.- 8.6.3 Die vier Hauptsätze der Gleichgewichtsthermodynamik.- 8.6.4 Reversible und irreversible Prozesse.- 8.6.5 Flüsse, Kräfte und Entropieproduktion.- 8.6.6 Lineare irreversible Thermodynamik.- 8.6.7 Weitab vom Gleichgewicht ¿ Bifurkationen, mehrfache stationäre Zustände und räumliche Ordnung.- 8.6.8 Oszillationen, chemische Wellen und Molekulares Chaos.- 8.6.9 Schlußbemerkungen.- 8.7 Biologische Energiekonservierung.- 8.7.1 Einleitung.- 8.7.2 Die Grundprinzipien der funktionellen und strukturellen Organisation der bioenergetischen Fundamentalprozesse.- 8.7.3 Die Eigenschaften von ATP und dessen zentrale Rolle in der Bioenergetik.- 8.7.4 Mechanismus und Energetik des Umsatzes von gebundenem Wasserstoff mit O2.- 8.7.5 Biologische Energietransformationsprozesse.- 9 Enzyme als Biokatalysatoren.- 9.1 Einleitung.- 9.2 Wie wirken Enzyme?.- 9.3 Wie werden Enzyme reguliert?.- 9.4 Protein-Struktur (Globuläre Proteine).- 9.4.1 Wie falten sich Proteine?.- 9.4.2 Bausteine.- 9.4.3 Konstruktions-(Sekundärstruktur-)elemente.- 9.4.4 Dreidimensionale Struktur.- 9.5 Beispiele.- 9.5.1 Proteasen.- 9.5.2 Immunglobuline.- 9.6 Strukturelle Organisation von Proteinen.- 9.6.1 Ketten, Bausteine und Stabilität.- 9.6.2 Organisationsschema.- 9.6.3 Hierarchie.- 9.6.4 Symmetrie.- 9.6.5 Evolution.- 10 Die biologische Funktion der Nukleinsäuren..- 10.1 Einleitung.- 10.1.1 Allgemeines.- 10.1.2 Vorkommen und Struktur von Nukleinsäuren.- 10.2 Die Replikation der DNA.- 10.2.1 Organisation der DNA in der Zelle.- 10.2.2 Prinzipien der DNA-Replikation.- 10.2.3 Replikationsmodelle.- 10.2.4 Der Replikationsapparat.- 10.2.5 Reverse Transcriptase.- 10.3 Genexpression.- 10.3.1 Transcription.- 10.3.2 Prozessierung und Spleißen von RNA-Vorstufen.- 10.3.3 Die Translation.- 10.4 Regulation der Genexpression.- 10.4.1 Kontrollprozesse auf der Ebene der Transcription.- 10.4.2 Kontrolle anderer Schritte der Genexpression.- 11 Thermodynamik und Kinetik von Self-Assembly-Vorgängen..- 11.1 Allgemeines.- 11.2 Lineare Assoziation.- 11.3 Gleichgewicht.- 11.4 Kinetik.- 11.5 Größenverteilung und Längenbestimmung.- 11.6 Andere Effekte.- 12 Membranen.- 12.1 Membran-Modelle.- 12.1.1 Einleitung: Vorkommen und...
Details
Erscheinungsjahr: 2011
Fachbereich: Biophysik
Genre: Biologie
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Seiten: 1012
Inhalt: xxiv
980 S.
ISBN-13: 9783642618161
ISBN-10: 3642618162
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Redaktion: Hoppe, W.
Ziegler, H.
Markl, H.
Lohmann, W.
Herausgeber: W Hoppe/W Lohmann/H Markl u a
Auflage: 2. Aufl. 1982. Softcover reprint of the original 2nd ed. 1982
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Maße: 279 x 210 x 54 mm
Von/Mit: W. Hoppe (u. a.)
Erscheinungsdatum: 01.11.2011
Gewicht: 2,408 kg
preigu-id: 105650461
Inhaltsverzeichnis
1 Bau der Zelle (Prokaryoten, Eukaryoten)..- 1.1 Eigenschaften der Zelle.- 1.1.1 Molekül ¿ Organelle ¿ Zelle ¿ Organismus.- 1.1.2 Die Zelle als Grundeinheit des Lebens.- 1.1.3 Die Größe der Zelle.- 1.1.4 Protozyte und Euzyte.- 1.2 Zellorganellen.- 1.2.1 Plasmalemma.- 1.2.2 Zellkern.- 1.2.3 Grundplasma.- 1.2.4 Organellen aus einem Kompartiment.- 1.2.5 Zusammengesetzte Organellen.- 1.2.6 Zellhüllen und Zellverbindungen.- 1.3 Kern-und Zellteilung.- 1.3.1 Mitose.- 1.3.2 Meiose.- 1.3.3 Zellteilung.- 1.4 Evolution der Euzyte.- 1.5 Viren und Bakteriophagen.- 2 Der chemische Bau biologisch wichtiger Makromoleküle..- 2.1 Einleitung.- 2.2 Nucleinsäuren und ihre Bausteine.- 2.2.1 Nucleotide als Bausteine.- 2.2.2 Die kovalente Polynucleotid-Struktur.- 2.2.3 Das Prinzip der Basenpaarung.- 2.2.4 Die Doppelhelix-Struktur der DNA.- 2.2.5 Eigenschaften der DNA.- 2.3 Proteine und ihre Bausteine.- 2.3.1 Aminosäuren als Bausteine.- 2.3.2 Das Prinzip der Verknüpfung.- 2.3.3 Eigenschaften der Aminosäuren.- 2.3.4 Die kovalente Struktur von Proteinen.- 2.3.5 Die Stabilisierung der Strukturelemente durch Wasserstoffbrücken (Sekundärstruktur).- 2.3.6 Die Raumstruktur.- 3 Methoden zur Untersuchung struktureller und funktioneller Eigenschaften einzelner Biomoleküle sowie ganzer biologischer Systeme.- 3.1 Äußere Struktur.- 3.1.1 Allgemeines.- 3.1.2 Experimented Methoden.- 3.2 Innere Struktur und Funktion.- 3.2.1 Strukturanalyse mit Röntgenstrahlen.- 3.2.2 Diffuse Kleinwinkelstreuung von makromolekularen Lösungen.- 3.2.3 Strukturanalyse mit Elektronenstrahlen (Elektronenmikroskopie).- 3.2.4 Lichtstreuung an Makromolekülen.- 3.2.5 Anwendung der Spektralphotometrie im UV- und sichtbaren Bereich.- 3.2.6 Die Anwendung der Photoakustischen Spektroskopie in der Biophysik.- 3.2.7 Wirkungsspektrometrie.- 3.2.8 ORD- und CD-Spektroskopie.- 3.2.9 Anwendung des Mößbauereffektes auf Probleme der Biophysik.- 3.2.10 Methoden zur Untersuchung schneller und funktioneller Eigenschaften einzelner chemischer Reaktionen.- 3.3 Elektronenspin-Resonanz-Spektroskopie.- 3.3.1 Einführung.- 3.3.2 Der Spin-Hamilton-Operator.- 3.3.3 ESR-Spektren von organischen Radikalen in Lösungen ¿ Isotrope Hyperfeinaufspaltung.- 3.3.4 ESR-Spektren von organischen Radikalen im Festkörper ¿ Anisotrope Hyperfeinaufspaltung.- 3.3.5 ESR-Spektren von anorganischen Radikalen ¿ g-Faktor-Anisotropie.- 3.3.6 ESR von organischen Molekülen im Triplett-Zustand ¿ Elektronen-Spin-Spin-Wechselwirkung.- 3.3.7 Relaxationszeiten und Linienform.- 3.3.8 Das ESR-Spektrometer.- 3.3.9 Verwandte Techniken ¿ Mehrfachresonanzen.- 3.3.10 Anwendungen.- 3.4 Kernresonanzspektroskopie.- 3.4.1 Einleitung.- 3.4.2 Grundlegende Theorie.- 3.4.3 Experimentelle Technik.- 3.4.4 Biophysikalische Anwendungen der Kernresonanzspektroskopie.- 4 Intra-und Intermolekulare Wechselwirkungen.- 4.1 Einleitung.- 4.2 Primärstruktur.- 4.2.1 Teilchen.- 4.2.2 Atome.- 4.2.3 Bindungen.- 4.3 Wechselwirkungen zwischen Strukturbausteinen.- 4.3.1 Die Abstoßung von Elektronenpaaren.- 4.3.2 Elektrostatische Kräfte.- 4.3.3 Dispersionskräfte.- 4.3.4 Wasserstoffbrücken.- 4.4 Charge-Transfer-Reaktionen in Biomolekülen.- 4.5 Konformationsumwandlungen in Biopolymeren.- 4.5.1 Einleitung.- 4.5.2 Theoretische Behandlung.- 4.5.3 Experimentelle Beispiele.- 4.6 Polare Wechselwirkungen, Hydratation, Protonenleitung und Konformation biologischer Systeme ¿Ergebnisse infrarotspektroskopischer Untersuchungen.- 4.6.1 Grundlagen.- 4.6.2 Wechselwirkung und Konformation bei Polynucleotiden.- 4.6.3 Wasserstoffbrücken zwischen Seitengruppen, Protonenleitung, Hydratation und Konformation von Proteinen.- 4.6.4 Experimentelle Technik.- 4.7 Debye-Hückel-Theorie (Kräfte zwischen Molekülen in Lösung).- 4.7.1 Debye-Hückel-Theorie.- 4.7.2 Quantenmechanische Diskussion.- 4.8 Polyelektrolyte und ihre Interaktionen.- 4.8.1 Einleitung.- 4.8.2 Polyelektrolyte in Salzlösungen.- 4.8.3 Polyelektrolyte an Grenzflächen.- 4.8.4 Polyelektrolyte in Komplexen.- 4.8.5 Ausblick.- 5 Energieübertragungsmechanismen.- 5.1 Allgemeine Grundlagen der Photophysik und Photochemie.- 5.1.1 Stationäre Zustande von Molekülen.- 5.1.2 Theoretische Grundlagen zur Beschreibung von Molekülzuständen.- 5.1.3 Übersicht über wichtige photophysikalische Prozesse.- 5.1.4 Mechanismen ausgewählter photophysikalischer Prozesse.- 5.1.5 Einige Anwendungen der Absorptions- und Fluoreszenzspektroskopie.- 5.1.6 Änderung der Basizität bzw. Acidität mit der Elektronenanregung.- 5.1.7 Fluoreszenzlöschung.- 5.1.8 Energiewanderung.- 5.1.9 Verzögerte Fluoreszenz.- 5.1.10 Photochemische Primärreaktionen.- 5.2 Energieübertragungsmechanismen.- 5.2.1 Klassische Betrachtung.- 5.2.2 Emittermolekül nahe an Absorberschicht.- 5.2.3 Energieübertragung in monomolekularen Schichtsystemen.- 5.2.4 Rückwirkung des Empfängermoleküls 2 auf das Sendermolekül 1.- 5.2.5 Emittermolekül im Echo eines Metallspiegels.- 5.2.6 Energieübertragung in kooperativen Systemen von Farbstoffmolekülen.- 6 Strahlenbiophysik..- 6.1 Einleitung.- 6.2 Die Strahlung und ihre Messung.- 6.2.1 Strahlenarten.- 6.2.2 Wechselwirkung Strahlung-Materie.- 6.2.3 Dosis und Dosisleistung.- 6.2.4 Dosimetrie.- 6.3 Beschreibung und Deutung der Strahlenwirkung.- 6.3.1 Dosiseffektkurven und Treffertheorie.- 6.3.2 Direkte und indirekte Strahlenwirkung.- 6.3.3 Energieübertragungsprozesse, Reaktionsgeschwindigkeiten, Impulsphoto- und -radiolyse.- 6.4 Molekulare Strahleneffekte.- 6.4.1 Strahlenchemie des Wassers.- 6.4.2 Radikale und Molekularprodukte.- 6.4.3 Modifizierung der Strahlenwirkung.- 6.5 Strahlenwirkung auf Biomoleküle und molekulare Strukturen.- 6.5.1 Strahlenwirkung auf Proteine.- 6.5.2 Strahlenwirkung auf Nucleinsäuren.- 6.5.3 Strahlenwirkung auf Membranstrukturen.- 6.6 Strahlenwirkung auf Zellen und Organismen.- 6.6.1 Strahlenwirkung auf die Zelle.- 6.6.2 Genetische Strahlenwirkungen.- 6.6.3 Strahlenstimulation.- 6.7 Strahlengefährdung und Strahlenschutz.- 6.7.1 Natürliche und zivilisatorische Strahlenbelastung.- 6.7.2 Strahlenschutz.- 7 Isotopen-Methoden in der Biologie.- 7.1 Einleitung.- 7.2 Stabile und radioaktive Isotope.- 7.2.1 Vergleichende Betrachtung.- 7.2.2 Stabile Isotope und die Prinzipien ihrer Messung.- 7.2.3 Radioaktive Isotope.- 7.2.4 Die wichtigsten Meßmethoden für radioaktive Isotope.- 7.3 Isotopeneffekte.- 7.3.1 Hauptursachen von Isotopeneffekten.- 7.3.2 Kinetische Isotopeneffekte und ihre Bestimmung.- 7.4 Analytische Isotopenanwendung.- 7.4.1 Aktivierungsanalyse.- 7.4.2 Isotopen-Verdünnungsanalysen.- 7.4.3 Radioimmunologische Analyse.- 7.5 Beispiele für Isotopenanwendungen.- 7.5.1 Verteilungsstudien.- 7.5.2 Stoffwechsel und Transport.- 7.5.3 Sterischer Verlauf von Enzymreaktionen an prochiralen Systemen.- 7.5.4 Isotopenaustauschstudien.- 8 Energetische und statistische Beziehungen.- 8.1 Allgemeines.- 8.2 Grundbegriffe der Gleichgewichtsthermodynamik.- 8.2.1 Erster Hauptsatz, Enthalpie.- 8.2.2 Zweiter Hauptsatz, Entropie, Freie Enthalpie, Gleichgewicht, maximale Nutzarbeit.- 8.2.3 Standardwerte der Zustandsgrößen.- 8.2.4 Grundreaktionsarbeit und Gleichgewichtskonstante.- 8.2.5 Chemisches Potential, Aktivität, Standardzustand.- 8.2.6 Phasengleichgewicht, Phasenregel.- 8.3 Interpretation thermodynamischer Größen durch die Molekularstatistik.- 8.3.1 Energieeigenwerte, Maxwell-Boltzmann-Verteilung, Zustandssummen.- 8.3.2 Zustandssummen und thermodynamische Funktionen, dritter Hauptsatz.- 8.3.3 Statistische Beschreibung des Gleichgewichts.- 8.4 Theorie der absoluten Reaktionsgeschwindigkeiten nach Eyring.- 8.4.1 Definition kinetischer Parameter.- 8.4.2 Theorie des Übergangszustandes.- 8.5 Energiefluß in der belebten Welt, ATP, Übertragungspotential.- 8.6 Irreversible Thermodynamik ¿ Ein Überblick. Peter Schuster.- 8.6.1 Einleitung.- 8.6.2 Gleichgewicht ¿ der Zustand perfekter dynamischer Kompensation.- 8.6.3 Die vier Hauptsätze der Gleichgewichtsthermodynamik.- 8.6.4 Reversible und irreversible Prozesse.- 8.6.5 Flüsse, Kräfte und Entropieproduktion.- 8.6.6 Lineare irreversible Thermodynamik.- 8.6.7 Weitab vom Gleichgewicht ¿ Bifurkationen, mehrfache stationäre Zustände und räumliche Ordnung.- 8.6.8 Oszillationen, chemische Wellen und Molekulares Chaos.- 8.6.9 Schlußbemerkungen.- 8.7 Biologische Energiekonservierung.- 8.7.1 Einleitung.- 8.7.2 Die Grundprinzipien der funktionellen und strukturellen Organisation der bioenergetischen Fundamentalprozesse.- 8.7.3 Die Eigenschaften von ATP und dessen zentrale Rolle in der Bioenergetik.- 8.7.4 Mechanismus und Energetik des Umsatzes von gebundenem Wasserstoff mit O2.- 8.7.5 Biologische Energietransformationsprozesse.- 9 Enzyme als Biokatalysatoren.- 9.1 Einleitung.- 9.2 Wie wirken Enzyme?.- 9.3 Wie werden Enzyme reguliert?.- 9.4 Protein-Struktur (Globuläre Proteine).- 9.4.1 Wie falten sich Proteine?.- 9.4.2 Bausteine.- 9.4.3 Konstruktions-(Sekundärstruktur-)elemente.- 9.4.4 Dreidimensionale Struktur.- 9.5 Beispiele.- 9.5.1 Proteasen.- 9.5.2 Immunglobuline.- 9.6 Strukturelle Organisation von Proteinen.- 9.6.1 Ketten, Bausteine und Stabilität.- 9.6.2 Organisationsschema.- 9.6.3 Hierarchie.- 9.6.4 Symmetrie.- 9.6.5 Evolution.- 10 Die biologische Funktion der Nukleinsäuren..- 10.1 Einleitung.- 10.1.1 Allgemeines.- 10.1.2 Vorkommen und Struktur von Nukleinsäuren.- 10.2 Die Replikation der DNA.- 10.2.1 Organisation der DNA in der Zelle.- 10.2.2 Prinzipien der DNA-Replikation.- 10.2.3 Replikationsmodelle.- 10.2.4 Der Replikationsapparat.- 10.2.5 Reverse Transcriptase.- 10.3 Genexpression.- 10.3.1 Transcription.- 10.3.2 Prozessierung und Spleißen von RNA-Vorstufen.- 10.3.3 Die Translation.- 10.4 Regulation der Genexpression.- 10.4.1 Kontrollprozesse auf der Ebene der Transcription.- 10.4.2 Kontrolle anderer Schritte der Genexpression.- 11 Thermodynamik und Kinetik von Self-Assembly-Vorgängen..- 11.1 Allgemeines.- 11.2 Lineare Assoziation.- 11.3 Gleichgewicht.- 11.4 Kinetik.- 11.5 Größenverteilung und Längenbestimmung.- 11.6 Andere Effekte.- 12 Membranen.- 12.1 Membran-Modelle.- 12.1.1 Einleitung: Vorkommen und...
Details
Erscheinungsjahr: 2011
Fachbereich: Biophysik
Genre: Biologie
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Seiten: 1012
Inhalt: xxiv
980 S.
ISBN-13: 9783642618161
ISBN-10: 3642618162
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Redaktion: Hoppe, W.
Ziegler, H.
Markl, H.
Lohmann, W.
Herausgeber: W Hoppe/W Lohmann/H Markl u a
Auflage: 2. Aufl. 1982. Softcover reprint of the original 2nd ed. 1982
Hersteller: Springer Berlin
Springer Berlin Heidelberg
Maße: 279 x 210 x 54 mm
Von/Mit: W. Hoppe (u. a.)
Erscheinungsdatum: 01.11.2011
Gewicht: 2,408 kg
preigu-id: 105650461
Warnhinweis