Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Beschreibung
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Inhaltsverzeichnis
An invitation to Bayesian nonparametrics Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker; 1. Bayesian nonparametric methods: motivation and ideas Stephen G. Walker; 2. The Dirichlet process, related priors, and posterior asymptotics Subhashis Ghosal; 3. Models beyond the Dirichlet process Antonio Lijoi and Igor Prünster; 4. Further models and applications Nils Lid Hjort; 5. Hierarchical Bayesian nonparametric models with applications Yee Whye Teh and Michael I. Jordan; 6. Computational issues arising in Bayesian nonparametric hierarchical models Jim Griffin and Chris Holmes; 7. Nonparametric Bayes applications to biostatistics David B. Dunson; 8. More nonparametric Bayesian models for biostatistics Peter Müller and Fernando Quintana; Author index; Subject index.
Details
Erscheinungsjahr: 2014
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
ISBN-13: 9780521513463
ISBN-10: 0521513464
Sprache: Englisch
Einband: Gebunden
Redaktion: Hjort, Nils Lid
Holmes, Chris
Muller, Peter
Hersteller: Cambridge University Press
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 260 x 183 x 21 mm
Von/Mit: Nils Lid Hjort (u. a.)
Erscheinungsdatum: 28.02.2014
Gewicht: 0,777 kg
Artikel-ID: 101451538