Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Bayes Rules!
An Introduction to Applied Bayesian Modeling
Taschenbuch von Alicia A. Johnson (u. a.)
Sprache: Englisch

90,25 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Lieferzeit 1-2 Wochen

Kategorien:
Beschreibung
? Utilizes data driven examples and exercises.

? Emphasizes the iterative model building and evaluation process.

? Surveys an interconnected range of multivariable regression and classification models.

? Presents fundamental Markov chain Monte Carlo simulation techniques for Bayesian models.

|

An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. the book assumes that readers are familiar with the content covered in a typical undergraduate-level introductory statistics course. Readers will also, ideally, have some experience with undergraduate-level probability, calculus, and the R statistical software. Readers without this background will still be able to follow along so long as they
are eager to pick up these tools on the fly as all R code is [...] Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum.

Features

- Utilizes data-driven examples and exercises.

- Emphasizes the iterative model building and evaluation process.

- Surveys an interconnected range of multivariable regression and classification models.

- Presents fundamental Markov chain Monte Carlo simulation.

- Integrates R code, including RStan modeling tools and the bayesrules package.

- Encourages readers to tap into their intuition and learn by doing.

- Provides a friendly and inclusive introduction to technical Bayesian concepts.

- Supports Bayesian applications with foundational Bayesian theory.

? Utilizes data driven examples and exercises.

? Emphasizes the iterative model building and evaluation process.

? Surveys an interconnected range of multivariable regression and classification models.

? Presents fundamental Markov chain Monte Carlo simulation techniques for Bayesian models.

|

An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. the book assumes that readers are familiar with the content covered in a typical undergraduate-level introductory statistics course. Readers will also, ideally, have some experience with undergraduate-level probability, calculus, and the R statistical software. Readers without this background will still be able to follow along so long as they
are eager to pick up these tools on the fly as all R code is [...] Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum.

Features

- Utilizes data-driven examples and exercises.

- Emphasizes the iterative model building and evaluation process.

- Surveys an interconnected range of multivariable regression and classification models.

- Presents fundamental Markov chain Monte Carlo simulation.

- Integrates R code, including RStan modeling tools and the bayesrules package.

- Encourages readers to tap into their intuition and learn by doing.

- Provides a friendly and inclusive introduction to technical Bayesian concepts.

- Supports Bayesian applications with foundational Bayesian theory.

Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9780367255398
ISBN-10: 0367255391
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Johnson, Alicia A.
Ott, Miles Q.
Dogucu, Mine
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 256 x 180 x 32 mm
Von/Mit: Alicia A. Johnson (u. a.)
Erscheinungsdatum: 04.03.2022
Gewicht: 1,127 kg
Artikel-ID: 120543061
Details
Erscheinungsjahr: 2022
Fachbereich: Wahrscheinlichkeitstheorie
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: Einband - flex.(Paperback)
ISBN-13: 9780367255398
ISBN-10: 0367255391
Sprache: Englisch
Einband: Kartoniert / Broschiert
Autor: Johnson, Alicia A.
Ott, Miles Q.
Dogucu, Mine
Hersteller: Taylor & Francis Ltd
Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, D-36244 Bad Hersfeld, gpsr@libri.de
Maße: 256 x 180 x 32 mm
Von/Mit: Alicia A. Johnson (u. a.)
Erscheinungsdatum: 04.03.2022
Gewicht: 1,127 kg
Artikel-ID: 120543061
Sicherheitshinweis

Ähnliche Produkte

Ähnliche Produkte