Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Bayes Linear Statistics
Theory and Methods
Buch von Michael Goldstein (u. a.)
Sprache: Englisch

147,95 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field.

The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples.

The book covers:
* The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification.
* Simple ways to use partial prior specifications to adjust beliefs, given observations.
* Interpretative and diagnostic tools to display the implications of collections of belief statements, and to make stringent comparisons between expected and actual observations.
* General approaches to statistical modelling based upon partial exchangeability judgements.
* Bayes linear graphical models to represent and display partial belief specifications, organize computations, and display the results of analyses.

Bayes Linear Statistics is essential reading for all statisticians concerned with the theory and practice of Bayesian methods. There is an accompanying website hosting free software and guides to the calculations within the book.
Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field.

The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples.

The book covers:
* The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification.
* Simple ways to use partial prior specifications to adjust beliefs, given observations.
* Interpretative and diagnostic tools to display the implications of collections of belief statements, and to make stringent comparisons between expected and actual observations.
* General approaches to statistical modelling based upon partial exchangeability judgements.
* Bayes linear graphical models to represent and display partial belief specifications, organize computations, and display the results of analyses.

Bayes Linear Statistics is essential reading for all statisticians concerned with the theory and practice of Bayesian methods. There is an accompanying website hosting free software and guides to the calculations within the book.
Über den Autor
Michael Goldstein, Professor of Statistics, Department of Mathematical Sciences, University of Durham
Michael Goldstein has worked on and researched the Bayes linear approach for around 30 years, his general interests being in the foundations, methodology and applications of Bayesian/subjectivist approaches to statistics. He has an outstanding reputation as one of the most original thinkers in the field, and was a contributing author to Wiley's "Encyclopedia of Statistical Sciences".

David Wooff, Director of Statistics & Mathematics Consultancy Unit and Senior Lecturer in Statistics, Department of Mathematical Sciences, University of Durham
David Wooff has been involved in a long collaboration for over 20 years with Michael Goldstein and others on developing Bayes linear methods, his primary research interest being the general development and application of Bayes linear methodology.

Inhaltsverzeichnis
Preface.

1 The Bayes linear approach.

2 Expectation.

3 Adjusting beliefs.

4 The observed adjustment.

5 Partial Bayes linear analysis.

6 Exchangeable beliefs.

7 Co-exchangeable beliefs.

8 Learning about population variances.

9 Belief comparison.

10 Bayes linear graphical models.

11 Matrix algebra for implementing the theory.

12 Implementing Bayes linear statistics.

A Notation.

B Index of examples.

C Software for Bayes linear computation.

C.1 [B/D].

C.2 BAYES-LIN.

References.

Index.

Details
Erscheinungsjahr: 2007
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 536 S.
ISBN-13: 9780470015629
ISBN-10: 0470015624
Sprache: Englisch
Herstellernummer: 14501562000
Einband: Gebunden
Autor: Goldstein, Michael
Wooff, David
Hersteller: Wiley
John Wiley & Sons
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 249 x 162 x 37 mm
Von/Mit: Michael Goldstein (u. a.)
Erscheinungsdatum: 01.06.2007
Gewicht: 0,879 kg
Artikel-ID: 102224718
Über den Autor
Michael Goldstein, Professor of Statistics, Department of Mathematical Sciences, University of Durham
Michael Goldstein has worked on and researched the Bayes linear approach for around 30 years, his general interests being in the foundations, methodology and applications of Bayesian/subjectivist approaches to statistics. He has an outstanding reputation as one of the most original thinkers in the field, and was a contributing author to Wiley's "Encyclopedia of Statistical Sciences".

David Wooff, Director of Statistics & Mathematics Consultancy Unit and Senior Lecturer in Statistics, Department of Mathematical Sciences, University of Durham
David Wooff has been involved in a long collaboration for over 20 years with Michael Goldstein and others on developing Bayes linear methods, his primary research interest being the general development and application of Bayes linear methodology.

Inhaltsverzeichnis
Preface.

1 The Bayes linear approach.

2 Expectation.

3 Adjusting beliefs.

4 The observed adjustment.

5 Partial Bayes linear analysis.

6 Exchangeable beliefs.

7 Co-exchangeable beliefs.

8 Learning about population variances.

9 Belief comparison.

10 Bayes linear graphical models.

11 Matrix algebra for implementing the theory.

12 Implementing Bayes linear statistics.

A Notation.

B Index of examples.

C Software for Bayes linear computation.

C.1 [B/D].

C.2 BAYES-LIN.

References.

Index.

Details
Erscheinungsjahr: 2007
Genre: Importe, Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Buch
Inhalt: 536 S.
ISBN-13: 9780470015629
ISBN-10: 0470015624
Sprache: Englisch
Herstellernummer: 14501562000
Einband: Gebunden
Autor: Goldstein, Michael
Wooff, David
Hersteller: Wiley
John Wiley & Sons
Verantwortliche Person für die EU: Wiley-VCH GmbH, Boschstr. 12, D-69469 Weinheim, product-safety@wiley.com
Maße: 249 x 162 x 37 mm
Von/Mit: Michael Goldstein (u. a.)
Erscheinungsdatum: 01.06.2007
Gewicht: 0,879 kg
Artikel-ID: 102224718
Sicherheitshinweis