Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
162,95 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Balanis' Advanced Engineering Electromagnetics
The latest edition of the foundational guide to advanced electromagnetics
Balanis' third edition of Advanced Engineering Electromagnetics - a global best-seller for over 30 years - covers the advanced knowledge engineers involved in electromagnetics need to know, particularly as the topic relates to the fast-moving, continuously evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antennas, microwaves and wireless communications) points to an increase in the number of engineers needed to specialize in this field.
Highlights of the 3rd Edition include:
* A new chapter, on Artificial Impedance Surfaces (AIS), contains material on current and advanced EM technologies, including the exciting and fascinating topic of metasurfaces for:
* Control and broadband RCS reduction using checkerboard designs.
* Optimization of antenna fundamental parameters, such as: input impedance, directivity, realized gain, amplitude radiation pattern.
* Leaky-wave antennas using 1-D and 2-D polarization diverse-holographic high impedance metasurfaces for antenna radiation control and optimization.
* Associated MATLAB programs for the design of checkerboard metasurfaces for RCS reduction, and metasurface printed antennas and holographic L WA for radiation control and optimization.
* Throughout the book, there are:
* Additional examples, numerous end-of-chapter problems, and PPT notes.
* Fifty three MATLAB computer programs for computations, graphical visualizations and animations.
* Nearly 4,500 multicolor PowerPoint slides are available for self-study or lecture use.
The latest edition of the foundational guide to advanced electromagnetics
Balanis' third edition of Advanced Engineering Electromagnetics - a global best-seller for over 30 years - covers the advanced knowledge engineers involved in electromagnetics need to know, particularly as the topic relates to the fast-moving, continuously evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antennas, microwaves and wireless communications) points to an increase in the number of engineers needed to specialize in this field.
Highlights of the 3rd Edition include:
* A new chapter, on Artificial Impedance Surfaces (AIS), contains material on current and advanced EM technologies, including the exciting and fascinating topic of metasurfaces for:
* Control and broadband RCS reduction using checkerboard designs.
* Optimization of antenna fundamental parameters, such as: input impedance, directivity, realized gain, amplitude radiation pattern.
* Leaky-wave antennas using 1-D and 2-D polarization diverse-holographic high impedance metasurfaces for antenna radiation control and optimization.
* Associated MATLAB programs for the design of checkerboard metasurfaces for RCS reduction, and metasurface printed antennas and holographic L WA for radiation control and optimization.
* Throughout the book, there are:
* Additional examples, numerous end-of-chapter problems, and PPT notes.
* Fifty three MATLAB computer programs for computations, graphical visualizations and animations.
* Nearly 4,500 multicolor PowerPoint slides are available for self-study or lecture use.
Balanis' Advanced Engineering Electromagnetics
The latest edition of the foundational guide to advanced electromagnetics
Balanis' third edition of Advanced Engineering Electromagnetics - a global best-seller for over 30 years - covers the advanced knowledge engineers involved in electromagnetics need to know, particularly as the topic relates to the fast-moving, continuously evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antennas, microwaves and wireless communications) points to an increase in the number of engineers needed to specialize in this field.
Highlights of the 3rd Edition include:
* A new chapter, on Artificial Impedance Surfaces (AIS), contains material on current and advanced EM technologies, including the exciting and fascinating topic of metasurfaces for:
* Control and broadband RCS reduction using checkerboard designs.
* Optimization of antenna fundamental parameters, such as: input impedance, directivity, realized gain, amplitude radiation pattern.
* Leaky-wave antennas using 1-D and 2-D polarization diverse-holographic high impedance metasurfaces for antenna radiation control and optimization.
* Associated MATLAB programs for the design of checkerboard metasurfaces for RCS reduction, and metasurface printed antennas and holographic L WA for radiation control and optimization.
* Throughout the book, there are:
* Additional examples, numerous end-of-chapter problems, and PPT notes.
* Fifty three MATLAB computer programs for computations, graphical visualizations and animations.
* Nearly 4,500 multicolor PowerPoint slides are available for self-study or lecture use.
The latest edition of the foundational guide to advanced electromagnetics
Balanis' third edition of Advanced Engineering Electromagnetics - a global best-seller for over 30 years - covers the advanced knowledge engineers involved in electromagnetics need to know, particularly as the topic relates to the fast-moving, continuously evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antennas, microwaves and wireless communications) points to an increase in the number of engineers needed to specialize in this field.
Highlights of the 3rd Edition include:
* A new chapter, on Artificial Impedance Surfaces (AIS), contains material on current and advanced EM technologies, including the exciting and fascinating topic of metasurfaces for:
* Control and broadband RCS reduction using checkerboard designs.
* Optimization of antenna fundamental parameters, such as: input impedance, directivity, realized gain, amplitude radiation pattern.
* Leaky-wave antennas using 1-D and 2-D polarization diverse-holographic high impedance metasurfaces for antenna radiation control and optimization.
* Associated MATLAB programs for the design of checkerboard metasurfaces for RCS reduction, and metasurface printed antennas and holographic L WA for radiation control and optimization.
* Throughout the book, there are:
* Additional examples, numerous end-of-chapter problems, and PPT notes.
* Fifty three MATLAB computer programs for computations, graphical visualizations and animations.
* Nearly 4,500 multicolor PowerPoint slides are available for self-study or lecture use.
Inhaltsverzeichnis
Preface xix
About the Companion Website xxiii
1 Time-Varying and Time-Harmonic Electromagnetic Fields 1
1.1 Introduction 1
1.2 Maxwell's Equations 2
1.3 Constitutive Parameters and Relations 5
1.4 Circuit-Field Relations 7
1.5 Boundary Conditions 12
1.6 Power and Energy 18
1.7 Time-Harmonic Electromagnetic Fields 21
1.8 Multimedia 29
References 29
Problems 30
2 Electrical Properties of Matter 41
2.1 Introduction 41
2.2 Dielectrics, Polarization, and Permittivity 43
2.3 Magnetics, Magnetization, and Permeability 50
2.4 Current, Conductors, and Conductivity 57
2.5 Semiconductors 61
2.6 Superconductors 66
2.7 Metamaterials 68
2.8 Linear, Homogeneous, Isotropic, and Nondispersive Media 69
2.9 A.C. Variations in Materials 70
2.10 Multimedia 92
References 92
Problems 93
3 Wave Equation and Its Solutions 103
3.1 Introduction 103
3.2 Time-Varying Electromagnetic Fields 103
3.3 Time-Harmonic Electromagnetic Fields 105
3.4 Solution to the Wave Equation 106
3.5 Multimedia 125
References 125
Problems 125
4 Wave Propagation and Polarization 127
4.1 Introduction 127
4.2 Transverse Electromagnetic Modes 127
4.3 Transverse Electromagnetic Modes in Lossy Media 142
4.4 Polarization 151
4.5 Multimedia 171
References 171
Problems 172
5 Reflection and Transmission 179
5.1 Introduction 179
5.2 Normal Incidence--Lossless Media 179
5.3 Oblique Incidence--Lossless Media 183
5.4 Lossy Media 204
5.5 Reflection and Transmission of Multiple Interfaces 212
5.6 Polarization Characteristics on Reflection 228
5.7 Metamaterials 235
5.8 Multimedia 253
References 254
Problems 256
6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 271
6.1 Introduction 271
6.2 The Vector Potential A 272
6.3 The Vector Potential F 274
6.4 The Vector Potentials A and F 275
6.5 Construction of Solutions 277
6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 291
6.7 Far-Field Radiation 295
6.8 Radiation and Scattering Equations 296
6.9 Multimedia 317
References 317
Problems 318
7 Electromagnetic Theorems and Principles 323
7.1 Introduction 323
7.2 Duality Theorem 323
7.3 Uniqueness Theorem 325
7.4 Image Theory 327
7.5 Reciprocity Theorem 335
7.6 Reaction Theorem 337
7.7 Volume Equivalence Theorem 338
7.8 Surface Equivalence Theorem: Huygens' Principle 340
7.9 Induction Theorem (Induction Equivalent) 345
7.10 Physical Equivalent and Physical Optics Equivalent 349
7.11 Induction and Physical Equivalent Approximations 351
7.12 Multimedia 356
References 356
Problems 357
8 Rectangular Cross-Section Waveguides and Cavities 365
8.1 Introduction 365
8.2 Rectangular Waveguide 366
8.3 Rectangular Resonant Cavities 396
8.4 Hybrid (LSE and LSM) Modes 404
8.5 Partially Filled Waveguide 407
8.6 Transverse Resonance Method 419
8.7 Dielectric Waveguide 422
8.8 Stripline and Microstrip Lines 450
8.9 Ridged W
About the Companion Website xxiii
1 Time-Varying and Time-Harmonic Electromagnetic Fields 1
1.1 Introduction 1
1.2 Maxwell's Equations 2
1.3 Constitutive Parameters and Relations 5
1.4 Circuit-Field Relations 7
1.5 Boundary Conditions 12
1.6 Power and Energy 18
1.7 Time-Harmonic Electromagnetic Fields 21
1.8 Multimedia 29
References 29
Problems 30
2 Electrical Properties of Matter 41
2.1 Introduction 41
2.2 Dielectrics, Polarization, and Permittivity 43
2.3 Magnetics, Magnetization, and Permeability 50
2.4 Current, Conductors, and Conductivity 57
2.5 Semiconductors 61
2.6 Superconductors 66
2.7 Metamaterials 68
2.8 Linear, Homogeneous, Isotropic, and Nondispersive Media 69
2.9 A.C. Variations in Materials 70
2.10 Multimedia 92
References 92
Problems 93
3 Wave Equation and Its Solutions 103
3.1 Introduction 103
3.2 Time-Varying Electromagnetic Fields 103
3.3 Time-Harmonic Electromagnetic Fields 105
3.4 Solution to the Wave Equation 106
3.5 Multimedia 125
References 125
Problems 125
4 Wave Propagation and Polarization 127
4.1 Introduction 127
4.2 Transverse Electromagnetic Modes 127
4.3 Transverse Electromagnetic Modes in Lossy Media 142
4.4 Polarization 151
4.5 Multimedia 171
References 171
Problems 172
5 Reflection and Transmission 179
5.1 Introduction 179
5.2 Normal Incidence--Lossless Media 179
5.3 Oblique Incidence--Lossless Media 183
5.4 Lossy Media 204
5.5 Reflection and Transmission of Multiple Interfaces 212
5.6 Polarization Characteristics on Reflection 228
5.7 Metamaterials 235
5.8 Multimedia 253
References 254
Problems 256
6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 271
6.1 Introduction 271
6.2 The Vector Potential A 272
6.3 The Vector Potential F 274
6.4 The Vector Potentials A and F 275
6.5 Construction of Solutions 277
6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 291
6.7 Far-Field Radiation 295
6.8 Radiation and Scattering Equations 296
6.9 Multimedia 317
References 317
Problems 318
7 Electromagnetic Theorems and Principles 323
7.1 Introduction 323
7.2 Duality Theorem 323
7.3 Uniqueness Theorem 325
7.4 Image Theory 327
7.5 Reciprocity Theorem 335
7.6 Reaction Theorem 337
7.7 Volume Equivalence Theorem 338
7.8 Surface Equivalence Theorem: Huygens' Principle 340
7.9 Induction Theorem (Induction Equivalent) 345
7.10 Physical Equivalent and Physical Optics Equivalent 349
7.11 Induction and Physical Equivalent Approximations 351
7.12 Multimedia 356
References 356
Problems 357
8 Rectangular Cross-Section Waveguides and Cavities 365
8.1 Introduction 365
8.2 Rectangular Waveguide 366
8.3 Rectangular Resonant Cavities 396
8.4 Hybrid (LSE and LSM) Modes 404
8.5 Partially Filled Waveguide 407
8.6 Transverse Resonance Method 419
8.7 Dielectric Waveguide 422
8.8 Stripline and Microstrip Lines 450
8.9 Ridged W
Details
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 1136 S. |
ISBN-13: | 9781394180011 |
ISBN-10: | 1394180012 |
Sprache: | Englisch |
Herstellernummer: | 1W394180010 |
Autor: | Balanis, Constantine A. |
Auflage: | 3. Aufl. |
Hersteller: |
Wiley
Wiley & Sons |
Maße: | 51 x 182 x 260 mm |
Von/Mit: | Constantine A. Balanis |
Erscheinungsdatum: | 30.01.2024 |
Gewicht: | 1,982 kg |
Inhaltsverzeichnis
Preface xix
About the Companion Website xxiii
1 Time-Varying and Time-Harmonic Electromagnetic Fields 1
1.1 Introduction 1
1.2 Maxwell's Equations 2
1.3 Constitutive Parameters and Relations 5
1.4 Circuit-Field Relations 7
1.5 Boundary Conditions 12
1.6 Power and Energy 18
1.7 Time-Harmonic Electromagnetic Fields 21
1.8 Multimedia 29
References 29
Problems 30
2 Electrical Properties of Matter 41
2.1 Introduction 41
2.2 Dielectrics, Polarization, and Permittivity 43
2.3 Magnetics, Magnetization, and Permeability 50
2.4 Current, Conductors, and Conductivity 57
2.5 Semiconductors 61
2.6 Superconductors 66
2.7 Metamaterials 68
2.8 Linear, Homogeneous, Isotropic, and Nondispersive Media 69
2.9 A.C. Variations in Materials 70
2.10 Multimedia 92
References 92
Problems 93
3 Wave Equation and Its Solutions 103
3.1 Introduction 103
3.2 Time-Varying Electromagnetic Fields 103
3.3 Time-Harmonic Electromagnetic Fields 105
3.4 Solution to the Wave Equation 106
3.5 Multimedia 125
References 125
Problems 125
4 Wave Propagation and Polarization 127
4.1 Introduction 127
4.2 Transverse Electromagnetic Modes 127
4.3 Transverse Electromagnetic Modes in Lossy Media 142
4.4 Polarization 151
4.5 Multimedia 171
References 171
Problems 172
5 Reflection and Transmission 179
5.1 Introduction 179
5.2 Normal Incidence--Lossless Media 179
5.3 Oblique Incidence--Lossless Media 183
5.4 Lossy Media 204
5.5 Reflection and Transmission of Multiple Interfaces 212
5.6 Polarization Characteristics on Reflection 228
5.7 Metamaterials 235
5.8 Multimedia 253
References 254
Problems 256
6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 271
6.1 Introduction 271
6.2 The Vector Potential A 272
6.3 The Vector Potential F 274
6.4 The Vector Potentials A and F 275
6.5 Construction of Solutions 277
6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 291
6.7 Far-Field Radiation 295
6.8 Radiation and Scattering Equations 296
6.9 Multimedia 317
References 317
Problems 318
7 Electromagnetic Theorems and Principles 323
7.1 Introduction 323
7.2 Duality Theorem 323
7.3 Uniqueness Theorem 325
7.4 Image Theory 327
7.5 Reciprocity Theorem 335
7.6 Reaction Theorem 337
7.7 Volume Equivalence Theorem 338
7.8 Surface Equivalence Theorem: Huygens' Principle 340
7.9 Induction Theorem (Induction Equivalent) 345
7.10 Physical Equivalent and Physical Optics Equivalent 349
7.11 Induction and Physical Equivalent Approximations 351
7.12 Multimedia 356
References 356
Problems 357
8 Rectangular Cross-Section Waveguides and Cavities 365
8.1 Introduction 365
8.2 Rectangular Waveguide 366
8.3 Rectangular Resonant Cavities 396
8.4 Hybrid (LSE and LSM) Modes 404
8.5 Partially Filled Waveguide 407
8.6 Transverse Resonance Method 419
8.7 Dielectric Waveguide 422
8.8 Stripline and Microstrip Lines 450
8.9 Ridged W
About the Companion Website xxiii
1 Time-Varying and Time-Harmonic Electromagnetic Fields 1
1.1 Introduction 1
1.2 Maxwell's Equations 2
1.3 Constitutive Parameters and Relations 5
1.4 Circuit-Field Relations 7
1.5 Boundary Conditions 12
1.6 Power and Energy 18
1.7 Time-Harmonic Electromagnetic Fields 21
1.8 Multimedia 29
References 29
Problems 30
2 Electrical Properties of Matter 41
2.1 Introduction 41
2.2 Dielectrics, Polarization, and Permittivity 43
2.3 Magnetics, Magnetization, and Permeability 50
2.4 Current, Conductors, and Conductivity 57
2.5 Semiconductors 61
2.6 Superconductors 66
2.7 Metamaterials 68
2.8 Linear, Homogeneous, Isotropic, and Nondispersive Media 69
2.9 A.C. Variations in Materials 70
2.10 Multimedia 92
References 92
Problems 93
3 Wave Equation and Its Solutions 103
3.1 Introduction 103
3.2 Time-Varying Electromagnetic Fields 103
3.3 Time-Harmonic Electromagnetic Fields 105
3.4 Solution to the Wave Equation 106
3.5 Multimedia 125
References 125
Problems 125
4 Wave Propagation and Polarization 127
4.1 Introduction 127
4.2 Transverse Electromagnetic Modes 127
4.3 Transverse Electromagnetic Modes in Lossy Media 142
4.4 Polarization 151
4.5 Multimedia 171
References 171
Problems 172
5 Reflection and Transmission 179
5.1 Introduction 179
5.2 Normal Incidence--Lossless Media 179
5.3 Oblique Incidence--Lossless Media 183
5.4 Lossy Media 204
5.5 Reflection and Transmission of Multiple Interfaces 212
5.6 Polarization Characteristics on Reflection 228
5.7 Metamaterials 235
5.8 Multimedia 253
References 254
Problems 256
6 Auxiliary Vector Potentials, Construction of Solutions, and Radiation and Scattering Equations 271
6.1 Introduction 271
6.2 The Vector Potential A 272
6.3 The Vector Potential F 274
6.4 The Vector Potentials A and F 275
6.5 Construction of Solutions 277
6.6 Solution of the Inhomogeneous Vector Potential Wave Equation 291
6.7 Far-Field Radiation 295
6.8 Radiation and Scattering Equations 296
6.9 Multimedia 317
References 317
Problems 318
7 Electromagnetic Theorems and Principles 323
7.1 Introduction 323
7.2 Duality Theorem 323
7.3 Uniqueness Theorem 325
7.4 Image Theory 327
7.5 Reciprocity Theorem 335
7.6 Reaction Theorem 337
7.7 Volume Equivalence Theorem 338
7.8 Surface Equivalence Theorem: Huygens' Principle 340
7.9 Induction Theorem (Induction Equivalent) 345
7.10 Physical Equivalent and Physical Optics Equivalent 349
7.11 Induction and Physical Equivalent Approximations 351
7.12 Multimedia 356
References 356
Problems 357
8 Rectangular Cross-Section Waveguides and Cavities 365
8.1 Introduction 365
8.2 Rectangular Waveguide 366
8.3 Rectangular Resonant Cavities 396
8.4 Hybrid (LSE and LSM) Modes 404
8.5 Partially Filled Waveguide 407
8.6 Transverse Resonance Method 419
8.7 Dielectric Waveguide 422
8.8 Stripline and Microstrip Lines 450
8.9 Ridged W
Details
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Nachrichtentechnik |
Genre: | Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Buch |
Inhalt: | 1136 S. |
ISBN-13: | 9781394180011 |
ISBN-10: | 1394180012 |
Sprache: | Englisch |
Herstellernummer: | 1W394180010 |
Autor: | Balanis, Constantine A. |
Auflage: | 3. Aufl. |
Hersteller: |
Wiley
Wiley & Sons |
Maße: | 51 x 182 x 260 mm |
Von/Mit: | Constantine A. Balanis |
Erscheinungsdatum: | 30.01.2024 |
Gewicht: | 1,982 kg |
Warnhinweis