Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Assessing and Improving Prediction and Classification
Theory and Algorithms in C++
Taschenbuch von Timothy Masters
Sprache: Englisch

80,24 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

Aktuell nicht verfügbar

Kategorien:
Beschreibung
Assess the quality of your prediction and classification models in ways that accurately reflect their real-world performance, and then improve this performance using state-of-the-art algorithms such as committee-based decision making, resampling the dataset, and boosting. This book presents many important techniques for building powerful, robust models and quantifying their expected behavior when put to work in your application.
Considerable attention is given to information theory, especially as it relates to discovering and exploiting relationships between variables employed by your models. This presentation of an often confusing subject avoids advanced mathematics, focusing instead on concepts easily understood by those with modest background in mathematics.
All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Manyof these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the emphasis is on practical applicability, with all code written in such a way that it can easily be included in any program.
What You'll Learn
Compute entropy to detect problematic predictors

Improve numeric predictions using constrained and unconstrained combinations, variance-weighted interpolation, and kernel-regression smoothing

Carry out classification decisions using Borda counts, MinMax and MaxMin rules, union and intersection rules, logistic regression, selection by local accuracy, maximization of the fuzzy integral, and pairwise coupling

Harness information-theoretic techniques to rapidly screen large numbers of candidate predictors, identifying those that are especially promising

Use Monte-Carlo permutation methods to assessthe role of good luck in performance results

Compute confidence and tolerance intervals for predictions, as well as confidence levels for classification decisions
Who This Book is For
Anyone who creates prediction or classification models will find a wealth of useful algorithms in this book. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Assess the quality of your prediction and classification models in ways that accurately reflect their real-world performance, and then improve this performance using state-of-the-art algorithms such as committee-based decision making, resampling the dataset, and boosting. This book presents many important techniques for building powerful, robust models and quantifying their expected behavior when put to work in your application.
Considerable attention is given to information theory, especially as it relates to discovering and exploiting relationships between variables employed by your models. This presentation of an often confusing subject avoids advanced mathematics, focusing instead on concepts easily understood by those with modest background in mathematics.
All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Manyof these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the emphasis is on practical applicability, with all code written in such a way that it can easily be included in any program.
What You'll Learn
Compute entropy to detect problematic predictors

Improve numeric predictions using constrained and unconstrained combinations, variance-weighted interpolation, and kernel-regression smoothing

Carry out classification decisions using Borda counts, MinMax and MaxMin rules, union and intersection rules, logistic regression, selection by local accuracy, maximization of the fuzzy integral, and pairwise coupling

Harness information-theoretic techniques to rapidly screen large numbers of candidate predictors, identifying those that are especially promising

Use Monte-Carlo permutation methods to assessthe role of good luck in performance results

Compute confidence and tolerance intervals for predictions, as well as confidence levels for classification decisions
Who This Book is For
Anyone who creates prediction or classification models will find a wealth of useful algorithms in this book. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Über den Autor
Timothy Masters received a PhD in mathematical statistics with a specialization in numerical computing. Since then he has continuously worked as an independent consultant for government and industry. His early research involved automated feature detection in high-altitude photographs while he developed applications for flood and drought prediction, detection of hidden missile silos, and identification of threatening military vehicles. Later he worked with medical researchers in the development of computer algorithms for distinguishing between benign and malignant cells in needle biopsies. For the last twenty years he has focused primarily on methods for evaluating automated financial market trading systems. He has authored four books on practical applications of neural networks: Practical Neural Network Recipes in C++ (Academic Press, 1993) Signal and Image Processing with Neural Networks (Wiley, 1994) Advanced Algorithms for Neural Networks (Wiley, 1995) Neural, Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995).
Zusammenfassung

An expert-driven practical book based on real-life assessment examples of performance and classification models

Rich with C++ code examples and analysis of data

Contains all you need to know to analyze your C++ prediction and classification algorithms

Inhaltsverzeichnis
1. Assessment of Numeric Predictions.- 2. Assessment of Class Predictions.- 3. Resampling for Assessing Parameter Estimates.- 4. Resampling for Assessing Prediction and Classification.- 5. Miscellaneous Resampling Techniques.- 6. Combining Numeric Predictions.- 7. Combining Classification Models.- 8. Gaiting Methods.- 9. Information and Entropy.- References.
Details
Erscheinungsjahr: 2017
Fachbereich: Datenkommunikation, Netze & Mailboxen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xx
517 S.
18 s/w Illustr.
8 farbige Illustr.
517 p. 26 illus.
8 illus. in color.
ISBN-13: 9781484233351
ISBN-10: 1484233352
Sprache: Englisch
Herstellernummer: 978-1-4842-3335-1
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Masters, Timothy
Auflage: 1st ed.
Hersteller: Apress
Apress L.P.
Maße: 254 x 178 x 29 mm
Von/Mit: Timothy Masters
Erscheinungsdatum: 20.12.2017
Gewicht: 1,003 kg
Artikel-ID: 110988832
Über den Autor
Timothy Masters received a PhD in mathematical statistics with a specialization in numerical computing. Since then he has continuously worked as an independent consultant for government and industry. His early research involved automated feature detection in high-altitude photographs while he developed applications for flood and drought prediction, detection of hidden missile silos, and identification of threatening military vehicles. Later he worked with medical researchers in the development of computer algorithms for distinguishing between benign and malignant cells in needle biopsies. For the last twenty years he has focused primarily on methods for evaluating automated financial market trading systems. He has authored four books on practical applications of neural networks: Practical Neural Network Recipes in C++ (Academic Press, 1993) Signal and Image Processing with Neural Networks (Wiley, 1994) Advanced Algorithms for Neural Networks (Wiley, 1995) Neural, Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995).
Zusammenfassung

An expert-driven practical book based on real-life assessment examples of performance and classification models

Rich with C++ code examples and analysis of data

Contains all you need to know to analyze your C++ prediction and classification algorithms

Inhaltsverzeichnis
1. Assessment of Numeric Predictions.- 2. Assessment of Class Predictions.- 3. Resampling for Assessing Parameter Estimates.- 4. Resampling for Assessing Prediction and Classification.- 5. Miscellaneous Resampling Techniques.- 6. Combining Numeric Predictions.- 7. Combining Classification Models.- 8. Gaiting Methods.- 9. Information and Entropy.- References.
Details
Erscheinungsjahr: 2017
Fachbereich: Datenkommunikation, Netze & Mailboxen
Genre: Informatik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Inhalt: xx
517 S.
18 s/w Illustr.
8 farbige Illustr.
517 p. 26 illus.
8 illus. in color.
ISBN-13: 9781484233351
ISBN-10: 1484233352
Sprache: Englisch
Herstellernummer: 978-1-4842-3335-1
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Masters, Timothy
Auflage: 1st ed.
Hersteller: Apress
Apress L.P.
Maße: 254 x 178 x 29 mm
Von/Mit: Timothy Masters
Erscheinungsdatum: 20.12.2017
Gewicht: 1,003 kg
Artikel-ID: 110988832
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte