Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
60,75 €*
Versandkostenfrei per Post / DHL
Lieferzeit 1-2 Wochen
Kategorien:
Beschreibung
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Zusammenfassung
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Inhaltsverzeichnis
1 Introduction to Lie Groups.- 1.1. Manifolds.- 1.2. Lie Groups.- 1.3. Vector Fields.- 1.4. Lie Algebras.- 1.5. Differential Forms.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- 3.5. Group-Invariant Prolongations and Reduction.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- 4.2. Variational Symmetries.- 4.3. Conservation Laws.- 4.4. Noether's Theorem.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- 5.4. The Variational Complex.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- 6.2. Symplectic Structures and Foliations.- 6.3. Symmetries, First Integrals and Reduction of Order.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- 7.2. Symmetries and Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Notes.- Exercises.- References.- Symbol Index.- Author Index.
Details
Erscheinungsjahr: | 2000 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Graduate Texts in Mathematics |
Inhalt: |
xxviii
513 S. |
ISBN-13: | 9780387950006 |
ISBN-10: | 0387950001 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Olver, Peter J. |
Auflage: | 2nd ed. 1993. 3rd printing 2000 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. Graduate Texts in Mathematics |
Maße: | 235 x 155 x 30 mm |
Von/Mit: | Peter J. Olver |
Erscheinungsdatum: | 21.01.2000 |
Gewicht: | 0,82 kg |
Zusammenfassung
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Inhaltsverzeichnis
1 Introduction to Lie Groups.- 1.1. Manifolds.- 1.2. Lie Groups.- 1.3. Vector Fields.- 1.4. Lie Algebras.- 1.5. Differential Forms.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- 3.5. Group-Invariant Prolongations and Reduction.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- 4.2. Variational Symmetries.- 4.3. Conservation Laws.- 4.4. Noether's Theorem.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- 5.4. The Variational Complex.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- 6.2. Symplectic Structures and Foliations.- 6.3. Symmetries, First Integrals and Reduction of Order.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- 7.2. Symmetries and Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Notes.- Exercises.- References.- Symbol Index.- Author Index.
Details
Erscheinungsjahr: | 2000 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Graduate Texts in Mathematics |
Inhalt: |
xxviii
513 S. |
ISBN-13: | 9780387950006 |
ISBN-10: | 0387950001 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Olver, Peter J. |
Auflage: | 2nd ed. 1993. 3rd printing 2000 |
Hersteller: |
Springer New York
Springer US, New York, N.Y. Graduate Texts in Mathematics |
Maße: | 235 x 155 x 30 mm |
Von/Mit: | Peter J. Olver |
Erscheinungsdatum: | 21.01.2000 |
Gewicht: | 0,82 kg |
Warnhinweis