39,99 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Dieses Lehrbuch behandelt Lehrinhalte der Analysis für die ersten drei Semester des Bachelor-Studiums der Mathematik, Physik und Informatik. Es bietet eine moderne Darstellung der Differential- und Integralrechnung für Funktionen in einer und mehreren reellen sowie einer komplexen Variablen. Elementare Funktionen werden über komplexe Potenzreihen definiert und die Logarithmusfunktion auf ihrer Riemannschen Fläche betrachtet. Nachdem die eindimensionale Integration mittels reeller und komplexer Stammfunktionen durchgeführt ist, wird über uneigentliche n-dimensionale Riemannsche Integrale die Integration auf Mannigfaltigkeiten mit Differentialformen vorgestellt. Mit dem Lebesgueschen Integral und dessen Maßtheorie wird der Banachraum der p-fach integrablen Funktionen eingeführt. Für gewöhnliche Differentialgleichungen werden Existenz-, Eindeutigkeits- und Stabilitätsfragen beantwortet. In einem Kapitel zur Variationsrechnung wird über Geodätische der n-dimensionale Riemannsche Raum präsentiert. Ferner wird das Stieltjes-Integral mit BV-Belegungsfunktionen behandelt und die Differentiation absolut stetiger Funktionen durchgeführt. Schließlich wird der stetige Dualraum zum Lebesgueraum der p-fach integrablen Funktionen über den Rieszschen Darstellungssatz bestimmt.
Der Autor
Friedrich Sauvigny studierte Mathematik mit Physik im Anwendungsfach an der Universität Göttingen, wo er anschließend auch promovierte und sich habilitierte. Währenddessen war er als wissenschaftlicher Assistent an der RWTH Aachen, als akademischer Rat an der TU Clausthal sowie als Gastwissenschaftler an der Universität Bonn tätig. Im Anschluss wurde er zunächst Assistant Professor an der University of Wisconsin-Milwaukee und dann Professor an der BTU Cottbus-Senftenberg, wo er sich nun im Ruhestand befindet. Sein Arbeitsgebiet bilden die partiellen Differentialgleichungen und die geometrische Analysis.
Dieses Lehrbuch behandelt Lehrinhalte der Analysis für die ersten drei Semester des Bachelor-Studiums der Mathematik, Physik und Informatik. Es bietet eine moderne Darstellung der Differential- und Integralrechnung für Funktionen in einer und mehreren reellen sowie einer komplexen Variablen. Elementare Funktionen werden über komplexe Potenzreihen definiert und die Logarithmusfunktion auf ihrer Riemannschen Fläche betrachtet. Nachdem die eindimensionale Integration mittels reeller und komplexer Stammfunktionen durchgeführt ist, wird über uneigentliche n-dimensionale Riemannsche Integrale die Integration auf Mannigfaltigkeiten mit Differentialformen vorgestellt. Mit dem Lebesgueschen Integral und dessen Maßtheorie wird der Banachraum der p-fach integrablen Funktionen eingeführt. Für gewöhnliche Differentialgleichungen werden Existenz-, Eindeutigkeits- und Stabilitätsfragen beantwortet. In einem Kapitel zur Variationsrechnung wird über Geodätische der n-dimensionale Riemannsche Raum präsentiert. Ferner wird das Stieltjes-Integral mit BV-Belegungsfunktionen behandelt und die Differentiation absolut stetiger Funktionen durchgeführt. Schließlich wird der stetige Dualraum zum Lebesgueraum der p-fach integrablen Funktionen über den Rieszschen Darstellungssatz bestimmt.
Der Autor
Friedrich Sauvigny studierte Mathematik mit Physik im Anwendungsfach an der Universität Göttingen, wo er anschließend auch promovierte und sich habilitierte. Währenddessen war er als wissenschaftlicher Assistent an der RWTH Aachen, als akademischer Rat an der TU Clausthal sowie als Gastwissenschaftler an der Universität Bonn tätig. Im Anschluss wurde er zunächst Assistant Professor an der University of Wisconsin-Milwaukee und dann Professor an der BTU Cottbus-Senftenberg, wo er sich nun im Ruhestand befindet. Sein Arbeitsgebiet bilden die partiellen Differentialgleichungen und die geometrische Analysis.
Friedrich Sauvigny studierte Mathematik mit Physik im Anwendungsfach an der Universität Göttingen, wo er anschließend auch promovierte und sich habilitierte. Währenddessen war er als wissenschaftlicher Assistent an der RWTH Aachen, als akademischer Rat an der TU Clausthal sowie als Gastwissenschaftler an der Universität Bonn tätig. Im Anschluss wurde er zunächst Assistant Professor an der University of Wisconsin-Milwaukee und dann Professor an der BTU Cottbus-Senftenberg, wo er sich nun im Ruhestand befindet. Sein Arbeitsgebiet bilden die partiellen Differentialgleichungen und die geometrische Analysis.
1. Das System der reellen und komplexen Zahlen sowie ihre Reihen.- 2. Differential- und Integralrechnung in einer Veränderlichen.- 3. Die elementaren Funktionen als Potenzreihen und Überlagerungsflächen.- 4. Partielle Differentiation und differenzierbare Mannigfaltigkeiten im Rn.- 5. Riemannsches Integral im Rn mit Approximations- und Integralsätzen.- 6. Gewöhnliche Differentialgleichungen und Systeme.- 7. Eindimensionale Variationsrechnung und Riemannsche Räume.- 8 Lebesguesche Integrationstheorie mit ihren linearen Funktionalen.
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Titelzusatz: | Grundlagen, Differentiation, Integrationstheorie, Differentialgleichungen, Variationsmethoden, Funktionenräume, Darstellungssätze |
Inhalt: |
xv
625 S. 2 s/w Illustr. 625 S. 2 Abb. |
ISBN-13: | 9783662698648 |
ISBN-10: | 3662698641 |
Sprache: | Deutsch |
Herstellernummer: | 89504184 |
Einband: | Kartoniert / Broschiert |
Autor: | Sauvigny, Friedrich |
Auflage: | 2. wesentl. erweitert Auflage 2024 |
Hersteller: |
Springer Berlin
Springer Berlin Heidelberg |
Verantwortliche Person für die EU: | Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 240 x 168 x 35 mm |
Von/Mit: | Friedrich Sauvigny |
Erscheinungsdatum: | 31.12.2024 |
Gewicht: | 1,057 kg |
Friedrich Sauvigny studierte Mathematik mit Physik im Anwendungsfach an der Universität Göttingen, wo er anschließend auch promovierte und sich habilitierte. Währenddessen war er als wissenschaftlicher Assistent an der RWTH Aachen, als akademischer Rat an der TU Clausthal sowie als Gastwissenschaftler an der Universität Bonn tätig. Im Anschluss wurde er zunächst Assistant Professor an der University of Wisconsin-Milwaukee und dann Professor an der BTU Cottbus-Senftenberg, wo er sich nun im Ruhestand befindet. Sein Arbeitsgebiet bilden die partiellen Differentialgleichungen und die geometrische Analysis.
1. Das System der reellen und komplexen Zahlen sowie ihre Reihen.- 2. Differential- und Integralrechnung in einer Veränderlichen.- 3. Die elementaren Funktionen als Potenzreihen und Überlagerungsflächen.- 4. Partielle Differentiation und differenzierbare Mannigfaltigkeiten im Rn.- 5. Riemannsches Integral im Rn mit Approximations- und Integralsätzen.- 6. Gewöhnliche Differentialgleichungen und Systeme.- 7. Eindimensionale Variationsrechnung und Riemannsche Räume.- 8 Lebesguesche Integrationstheorie mit ihren linearen Funktionalen.
Erscheinungsjahr: | 2024 |
---|---|
Fachbereich: | Analysis |
Genre: | Mathematik, Medizin, Naturwissenschaften, Technik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Titelzusatz: | Grundlagen, Differentiation, Integrationstheorie, Differentialgleichungen, Variationsmethoden, Funktionenräume, Darstellungssätze |
Inhalt: |
xv
625 S. 2 s/w Illustr. 625 S. 2 Abb. |
ISBN-13: | 9783662698648 |
ISBN-10: | 3662698641 |
Sprache: | Deutsch |
Herstellernummer: | 89504184 |
Einband: | Kartoniert / Broschiert |
Autor: | Sauvigny, Friedrich |
Auflage: | 2. wesentl. erweitert Auflage 2024 |
Hersteller: |
Springer Berlin
Springer Berlin Heidelberg |
Verantwortliche Person für die EU: | Springer Spektrum in Springer Science + Business Media, Tiergartenstr. 15-17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 240 x 168 x 35 mm |
Von/Mit: | Friedrich Sauvigny |
Erscheinungsdatum: | 31.12.2024 |
Gewicht: | 1,057 kg |