Zum Hauptinhalt springen
Dekorationsartikel gehören nicht zum Leistungsumfang.
Analysis verständlich unterrichten
Mathematik Primär- und Sekundarstufe
Taschenbuch von Dankwart Vogel (u. a.)
Sprache: Deutsch

37,99 €*

inkl. MwSt.

Versandkostenfrei per Post / DHL

auf Lager, Lieferzeit 1-2 Werktage

Kategorien:
Beschreibung
Die Analysis ist und bleibt der harte Kern der Oberstufenmathematik. Das Buch bricht eine Lanze für einen verstehensorientierten Analysisunterricht. Nach Klärung der fachdidaktischen Grundposition werden alle etablierten Themenfelder gründlich beleuchtet: Folgen, Ableitung und Integral, Kurvendiskussion und Extremwertprobleme. Angesprochen sind in erster Linie die angehenden und praktizierenden Lehrerinnen und Lehrer.
Die Analysis ist und bleibt der harte Kern der Oberstufenmathematik. Das Buch bricht eine Lanze für einen verstehensorientierten Analysisunterricht. Nach Klärung der fachdidaktischen Grundposition werden alle etablierten Themenfelder gründlich beleuchtet: Folgen, Ableitung und Integral, Kurvendiskussion und Extremwertprobleme. Angesprochen sind in erster Linie die angehenden und praktizierenden Lehrerinnen und Lehrer.
Über den Autor
Dr. Rainer Danckwerts ist Professor für Didaktik der Mathematik an der Universität Siegen.

Dr. Dankwart Vogel ist Fachleiter für Mathematik am Studienseminar Bielefeld.
Zusammenfassung

Ein für die Lehreraus. und -weiterbildung konzipiertes Buch zur Didaktik der Analysis, das - ausgehend vom Status quo des Analysisunterrichts neue Perspektiven eröffnet - sich dabei auf einen ausgewiesenen und aktuellen fachdidaktischen Bezugsrahmen stützt und - einen deutlich unterrichtsbezogenen Akzent setzt.

Danckwerts ist der Experte auf dem Gebiet Didaktik der Analysis, hat dazu im Rahmen von PISA / Volkswagenstiftung ein Forschungsprojekt laufen und ist Mitglied im Beirat der Gesellschaft für Didaktik der Mathematik (GDM), Vorsitzender der Jury des GDM-Förderpreises 2004 sowie Berater des NRW-Schulministeriums.

Inhaltsverzeichnis
1 Grundpositionen 1.1 Eine öffentliche Diskussion 1.2 Ein Bezugsrahmen 1.3 Zurück zum Analysisunterricht 1.4 Ausblick Aufgaben 2 Zur Rolle der Folgen 2.1 Wo gehören die Folgen hin? 2.1.1 Diskrete Modellierung als rekursiver Prozess 2.1.2 Von der Iteration zum Konvergenzbegriff 2.2 Eine Frage mit Tiefgang : Ist 0,9999... = 1? 2.3 Vollständigkeit und die Folgen 2.3.1 Von Q nach R 2.3.2 Intervallschachtelungen 2.3.3 Keine "richtige" Analysis auf Q! 2.4 Zusammenfassung Aufgaben 3 Der Ableitungsbegriff 3.1 ein Blick in die Praxis 3.1.1 Schwierigkeiten mit einem klassischen Zugang 3.1.2 Konstruktiver Ausblick 3.2 Die Ableitung als lokale Änderungsrate 3.2.1 Grundverständnis 3.2.2 Ein Modellierungsbeispiel 3.2.3 Eine historische Quelle 3.3 Der Aspekt der lokalen Linearisierung 3.3.1 Grundverständnis 3.3.2 Vom Nutzen der lokalen Linearisierung 3.3.3 Verallgemeinerungsfähigkeit 3.3.4 Eine historische Quelle 3.4 Zusammenfassung Aufgaben 4 Der Integralbegriff 4.1 Ein Blick in die Praxis 4.2 Integrieren heißt Rekonstruieren 4.2.1 Grundverständnis 4.2.2 Von der Berandung zur Integralfunktion 4.2.3 Der Hauptsatz 4.2.4 Zusammenschau 4.3 Integrieren heißt Mitteln 4.3.1 Grundverständnis 4.3.2 Der Mittelwertsatz 4.4 Analytische Präzisierung 4.4.1 Eine Lücke wird geschlossen 4.4.2 Vom Nutzen der Produktsummen 4.4.3 Ein neuer Begriff entsteht 4.5 Zusammenfassung Aufgaben 5 Kurvendiskussion: Ja - aber wie? 5.1 Ein Blick in die Praxis 5.2 Fachliche Orientierung 5.2.1 Das Monotoniekriterium 5.2.2 Lokale Extrema 5.2.3 Wendepunkte 5.2.4 Übergreifender Gesichtspunkt 5.3 Wege der Öffnung 5.3.1 Erste Schritte 5.3.2 Echte Anwendungen 5.3.3 Echte Kurven 5.4 Zusammenfassung Aufgaben 6 Extremwertprobleme 6.1 Ein Blick in die Praxis 6.1.1 Anmerkungen zum Standardkalkül 6.1.2 Wege der Öffnung 6.2 Belebende Aspekte 6.2.1 Kraft elementarer Methoden 6.2.2 Einbeziehung historischer Momente 6.2.3 Aktivitäten zur Modellbildung 6.2.4 Das Medium Computer 6.3 Zusammenfassung Aufgaben Exkurs: Analysisunterricht hat Geschichte! Literatur Stichwörter
Details
Erscheinungsjahr: 2006
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Mathematik Primarstufe und Sekundarstufe I + II
Inhalt: x
230 S.
ISBN-13: 9783827417404
ISBN-10: 3827417406
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Vogel, Dankwart
Danckwerts, Rainer
Hersteller: Spektrum Akademischer Verlag
Mathematik Primarstufe und Sekundarstufe I + II
Maße: 210 x 148 x 14 mm
Von/Mit: Dankwart Vogel (u. a.)
Erscheinungsdatum: 22.03.2006
Gewicht: 0,316 kg
Artikel-ID: 102241293
Über den Autor
Dr. Rainer Danckwerts ist Professor für Didaktik der Mathematik an der Universität Siegen.

Dr. Dankwart Vogel ist Fachleiter für Mathematik am Studienseminar Bielefeld.
Zusammenfassung

Ein für die Lehreraus. und -weiterbildung konzipiertes Buch zur Didaktik der Analysis, das - ausgehend vom Status quo des Analysisunterrichts neue Perspektiven eröffnet - sich dabei auf einen ausgewiesenen und aktuellen fachdidaktischen Bezugsrahmen stützt und - einen deutlich unterrichtsbezogenen Akzent setzt.

Danckwerts ist der Experte auf dem Gebiet Didaktik der Analysis, hat dazu im Rahmen von PISA / Volkswagenstiftung ein Forschungsprojekt laufen und ist Mitglied im Beirat der Gesellschaft für Didaktik der Mathematik (GDM), Vorsitzender der Jury des GDM-Förderpreises 2004 sowie Berater des NRW-Schulministeriums.

Inhaltsverzeichnis
1 Grundpositionen 1.1 Eine öffentliche Diskussion 1.2 Ein Bezugsrahmen 1.3 Zurück zum Analysisunterricht 1.4 Ausblick Aufgaben 2 Zur Rolle der Folgen 2.1 Wo gehören die Folgen hin? 2.1.1 Diskrete Modellierung als rekursiver Prozess 2.1.2 Von der Iteration zum Konvergenzbegriff 2.2 Eine Frage mit Tiefgang : Ist 0,9999... = 1? 2.3 Vollständigkeit und die Folgen 2.3.1 Von Q nach R 2.3.2 Intervallschachtelungen 2.3.3 Keine "richtige" Analysis auf Q! 2.4 Zusammenfassung Aufgaben 3 Der Ableitungsbegriff 3.1 ein Blick in die Praxis 3.1.1 Schwierigkeiten mit einem klassischen Zugang 3.1.2 Konstruktiver Ausblick 3.2 Die Ableitung als lokale Änderungsrate 3.2.1 Grundverständnis 3.2.2 Ein Modellierungsbeispiel 3.2.3 Eine historische Quelle 3.3 Der Aspekt der lokalen Linearisierung 3.3.1 Grundverständnis 3.3.2 Vom Nutzen der lokalen Linearisierung 3.3.3 Verallgemeinerungsfähigkeit 3.3.4 Eine historische Quelle 3.4 Zusammenfassung Aufgaben 4 Der Integralbegriff 4.1 Ein Blick in die Praxis 4.2 Integrieren heißt Rekonstruieren 4.2.1 Grundverständnis 4.2.2 Von der Berandung zur Integralfunktion 4.2.3 Der Hauptsatz 4.2.4 Zusammenschau 4.3 Integrieren heißt Mitteln 4.3.1 Grundverständnis 4.3.2 Der Mittelwertsatz 4.4 Analytische Präzisierung 4.4.1 Eine Lücke wird geschlossen 4.4.2 Vom Nutzen der Produktsummen 4.4.3 Ein neuer Begriff entsteht 4.5 Zusammenfassung Aufgaben 5 Kurvendiskussion: Ja - aber wie? 5.1 Ein Blick in die Praxis 5.2 Fachliche Orientierung 5.2.1 Das Monotoniekriterium 5.2.2 Lokale Extrema 5.2.3 Wendepunkte 5.2.4 Übergreifender Gesichtspunkt 5.3 Wege der Öffnung 5.3.1 Erste Schritte 5.3.2 Echte Anwendungen 5.3.3 Echte Kurven 5.4 Zusammenfassung Aufgaben 6 Extremwertprobleme 6.1 Ein Blick in die Praxis 6.1.1 Anmerkungen zum Standardkalkül 6.1.2 Wege der Öffnung 6.2 Belebende Aspekte 6.2.1 Kraft elementarer Methoden 6.2.2 Einbeziehung historischer Momente 6.2.3 Aktivitäten zur Modellbildung 6.2.4 Das Medium Computer 6.3 Zusammenfassung Aufgaben Exkurs: Analysisunterricht hat Geschichte! Literatur Stichwörter
Details
Erscheinungsjahr: 2006
Fachbereich: Analysis
Genre: Mathematik
Rubrik: Naturwissenschaften & Technik
Medium: Taschenbuch
Reihe: Mathematik Primarstufe und Sekundarstufe I + II
Inhalt: x
230 S.
ISBN-13: 9783827417404
ISBN-10: 3827417406
Sprache: Deutsch
Ausstattung / Beilage: Paperback
Einband: Kartoniert / Broschiert
Autor: Vogel, Dankwart
Danckwerts, Rainer
Hersteller: Spektrum Akademischer Verlag
Mathematik Primarstufe und Sekundarstufe I + II
Maße: 210 x 148 x 14 mm
Von/Mit: Dankwart Vogel (u. a.)
Erscheinungsdatum: 22.03.2006
Gewicht: 0,316 kg
Artikel-ID: 102241293
Warnhinweis

Ähnliche Produkte

Ähnliche Produkte