56,20 €*
Versandkostenfrei per Post / DHL
auf Lager, Lieferzeit 1-2 Werktage
Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Gareth James is a professor of data sciences and operations, and the E. Morgan Stanley Chair in Business Administration, at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.
Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at the University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap.
Presents an essential statistical learning toolkit for practitioners in science, industry, and other fields
Demonstrates application of the statistical learning methods in R
Includes new chapters on deep learning, survival analysis, and multiple testing
Covers a range of topics, such as linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and deep learning
Features extensive color graphics for a dynamic learning experience
Includes supplementary material: [...]
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xv
607 S. 9 s/w Illustr. 182 farbige Illustr. 607 p. 191 illus. 182 illus. in color. |
ISBN-13: | 9781071614204 |
ISBN-10: | 1071614207 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
James, Gareth
Tibshirani, Robert Hastie, Trevor Witten, Daniela |
Auflage: | Second Edition 2021 |
Hersteller: | Springer US |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 34 mm |
Von/Mit: | Gareth James (u. a.) |
Erscheinungsdatum: | 30.07.2022 |
Gewicht: | 0,931 kg |
Gareth James is a professor of data sciences and operations, and the E. Morgan Stanley Chair in Business Administration, at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.
Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at the University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap.
Presents an essential statistical learning toolkit for practitioners in science, industry, and other fields
Demonstrates application of the statistical learning methods in R
Includes new chapters on deep learning, survival analysis, and multiple testing
Covers a range of topics, such as linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and deep learning
Features extensive color graphics for a dynamic learning experience
Includes supplementary material: [...]
Erscheinungsjahr: | 2022 |
---|---|
Fachbereich: | Wahrscheinlichkeitstheorie |
Genre: | Importe, Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Inhalt: |
xv
607 S. 9 s/w Illustr. 182 farbige Illustr. 607 p. 191 illus. 182 illus. in color. |
ISBN-13: | 9781071614204 |
ISBN-10: | 1071614207 |
Sprache: | Englisch |
Einband: | Kartoniert / Broschiert |
Autor: |
James, Gareth
Tibshirani, Robert Hastie, Trevor Witten, Daniela |
Auflage: | Second Edition 2021 |
Hersteller: | Springer US |
Verantwortliche Person für die EU: | Springer Verlag GmbH, Tiergartenstr. 17, D-69121 Heidelberg, juergen.hartmann@springer.com |
Maße: | 235 x 155 x 34 mm |
Von/Mit: | Gareth James (u. a.) |
Erscheinungsdatum: | 30.07.2022 |
Gewicht: | 0,931 kg |