Dekorationsartikel gehören nicht zum Leistungsumfang.
Sprache:
Englisch
96,29 €*
Versandkostenfrei per Post / DHL
Aktuell nicht verfügbar
Kategorien:
Beschreibung
In case you are considering to adopt this book for courses with over 50 students, please contact ties.[...] for more information.
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.
Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.
Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.
Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.
Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
In case you are considering to adopt this book for courses with over 50 students, please contact ties.[...] for more information.
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.
Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.
Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.
Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.
Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Zusammenfassung
Facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understandThe discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory
Inhaltsverzeichnis
Preface to the Second Edition. Preface. Introduction. 1. Propositional Calculus. 2. First-Order Logic. 3. Provability and Refutability. 4. Further Topics in First-Order Logic. 5. Type Theory. 6. Formalized Number Theory. 7. Incompleteness and Undecidability. Supplementary Exercises. Summary of Theorems. Bibliography. List of Figures. Index.
Details
Erscheinungsjahr: | 2010 |
---|---|
Fachbereich: | Grundlagen |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Applied Logic Series |
Inhalt: |
xviii
390 S. |
ISBN-13: | 9789048160792 |
ISBN-10: | 9048160790 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Andrews, Peter B. |
Auflage: | 2nd ed. 2002. Softcover reprint of the original 2nd ed. 2002 |
Hersteller: |
Springer Netherland
Springer Netherlands Applied Logic Series |
Maße: | 235 x 155 x 23 mm |
Von/Mit: | Peter B. Andrews |
Erscheinungsdatum: | 09.12.2010 |
Gewicht: | 0,622 kg |
Zusammenfassung
Facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understandThe discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory
Inhaltsverzeichnis
Preface to the Second Edition. Preface. Introduction. 1. Propositional Calculus. 2. First-Order Logic. 3. Provability and Refutability. 4. Further Topics in First-Order Logic. 5. Type Theory. 6. Formalized Number Theory. 7. Incompleteness and Undecidability. Supplementary Exercises. Summary of Theorems. Bibliography. List of Figures. Index.
Details
Erscheinungsjahr: | 2010 |
---|---|
Fachbereich: | Grundlagen |
Genre: | Mathematik |
Rubrik: | Naturwissenschaften & Technik |
Medium: | Taschenbuch |
Reihe: | Applied Logic Series |
Inhalt: |
xviii
390 S. |
ISBN-13: | 9789048160792 |
ISBN-10: | 9048160790 |
Sprache: | Englisch |
Ausstattung / Beilage: | Paperback |
Einband: | Kartoniert / Broschiert |
Autor: | Andrews, Peter B. |
Auflage: | 2nd ed. 2002. Softcover reprint of the original 2nd ed. 2002 |
Hersteller: |
Springer Netherland
Springer Netherlands Applied Logic Series |
Maße: | 235 x 155 x 23 mm |
Von/Mit: | Peter B. Andrews |
Erscheinungsdatum: | 09.12.2010 |
Gewicht: | 0,622 kg |
Warnhinweis